Skip to main content

Advertisement

Log in

Contamination risk and drinking water protection for a large-scale managed aquifer recharge site in a semi-arid karst region, Jordan

Kontaminationsrisiko und Trinkwasserschutz für eine großräumige künstliche Grundwasseranreicherungsanlage in einer semiariden Karstregion, Jordanien

Risque de contamination et protection de l’eau potable pour un site de recharge d’aquifère géré à grande échelle dans une région semi-aride karstique, en Jordanie

Riesgo de contaminación y protección del agua potable en un sitio de recarga de acuíferos gestionado a gran escala en una región de karst semiárida, Jordania

约旦半干旱地区一个大规模的管理的含水层补给地污染风险及饮用水保护

Risco de contaminação e proteção de águas potáveis para uma área de gerenciamento de recarga em larga escala em uma região cárstica semiárida, na Jordânia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Karst aquifers in semi-arid regions are particularly threatened by surface contamination, especially during winter seasons when extremely variable rainfall of high intensities prevails. An additional challenge is posed when managed recharge of storm water is applied, since karst aquifers display a high spatial variability of hydraulic properties. In these cases, adapted protection concepts are required to address the interaction of surface water and groundwater. In this study a combined protection approach for the surface catchment of the managed aquifer recharge site at the Wala reservoir in Jordan and the downstream Hidan wellfield, which are both subject to frequent bacteriological contamination, is developed. The variability of groundwater quality was evaluated by correlating contamination events to rainfall, and to recharge from the reservoir. Both trigger increased wadi flow downstream of the reservoir by surface runoff generation and groundwater seepage, respectively. A tracer test verified the major pathway of the surface flow into the underground by infiltrating from pools along Wadi Wala. An intrinsic karst vulnerability and risk map was adapted to the regional characteristics and developed to account for the catchment separation by the Wala Dam and the interaction of surface water and groundwater. Implementation of the proposed protection zones for the wellfield and the reservoir is highly recommended, since the results suggest an extreme contamination risk resulting from livestock farming, arable agriculture and human occupation along the wadi. The applied methods can be transferred to other managed aquifer recharge sites in similar karstic environments of semi-arid regions.

Zusammenfassung

Karstgrundwasserleiter in semiariden Gebieten sind im besonderen Maße von Oberflächenverschmutzung bedroht, vor allem während der Wintersaison, wenn extrem variabler Niederschlag von hoher Intensität vorherrscht. Eine zusätzliche Herausforderung stellt die künstliche Grundwasseranreicherung mit Niederschlagswasser dar, da Karstgrundwasserleiter eine hohe räumliche Variabilität in ihren hydraulischen Eigenschaften aufweisen. In diesen Fällen sind angepasste Schutzkonzepte erforderlich, die das Zusammenspiel von Oberflächenwasser und Grundwasser berücksichtigen. In dieser Studie wird ein kombiniertes Schutzkonzept für das Oberflächeneinzugsgebiet der künstlichen Grundwasseranreicherungsanlage am Wala Stausee und dem unterstromig gelegenen Hidan Brunnenfeld in Jordanien entwickelt. In Beiden wurden wiederholt bakteriologische Verunreinigungen festgestellt. Die Variabilität der Grundwasserqualität lässt sich durch Korrelation der Kontaminationsereignisse mit Niederschlagsereignissen und Infiltration aus dem Stausee erklären. Beides führt zu erhöhtem Abfluss im Wadi unterhalb des Stausees, hervorgerufen durch Oberflächenabfluss und Grundwasseraustritte. Ein Tracerversuch bestätigte die Infiltration des Oberflächenflusses in den Untergrund über Pools entlang des Wadi Wala. Eine intrinsische Karstvulnerabilitäts- und Risikokarte wurde entwickelt und an die regionalen Besonderheiten angepasst, um die Abtrennung des Einzugsgebiets durch den Wala Staudamm und das Zusammenwirken von Oberflächenwasser und Grundwasser zu berücksichtigen. Die Umsetzung der vorgeschlagenen Schutzzonen für das Brunnenfeld und das Reservoir wird dringend empfohlen, da die Ergebnisse ein extremes Kontaminationsrisiko durch Viehzucht, Ackerbau und menschliche Besiedlung entlang des Wadis zeigen. Die angewandten Methoden können auf andere künstliche Grundwasseranreicherungsanlagen in ähnlichen Karstgebieten semiarider Regionen übertragen werden.

Résumé

Les aquifères karstiques dans les régions semi-arides sont particulièrement menacés par une contamination provenant de la surface, surtout pendant les saisons hivernales où prévaut une pluviométrie extrêmement variable de fortes intensités. Un défi supplémentaire existe lorsque la gestion de la recharge par les eaux pluviales est. appliquée, car les aquifères karstiques présentent une grande variabilité spatiale des propriétés hydrauliques. Dans ces cas, des concepts de protection adaptée sont nécessaires pour traiter la question des interactions entre les eaux de surface et les eaux souterraines. Dans cette étude, une approche combinée de protection est. développée pour le bassin versant du site de recharge de l’aquifère au niveau du réservoir de Wala en Jordanie et du champ de captage d’Hidan situé en aval hydraulique, tous les deux sujets à une contamination bactériologique fréquente. La variabilité de la qualité des eaux souterraines a été évaluée en corrélant les événements de contamination avec les précipitations, et à la recharge à partir du réservoir. Les deux déclenchent une augmentation du débit de l’oued en aval du réservoir due à la génération d’un ruissellement de surface et à l’infiltration vers les eaux souterraines, respectivement. Un essai de traçage a vérifié la voie principale de l’écoulement de surface dans le sous-sol par infiltration à partir des bassins situés le long de l’oued Wala. Une carte de la vulnérabilité intrinsèque du karst et de risque a été adaptée aux caractéristiques régionales et élaborée pour prendre en considération la séparation des bassins versants par le barrage de Wala et l’interaction entre les eaux de surface et les eaux souterraines. La mise en œuvre des zones de protection proposées pour le champ de captage et le réservoir est. fortement recommandée, car les résultats suggèrent un risque de contamination extrême résultant de l’élevage, de l’agriculture et des habitations le long de l’oued. Les méthodes appliquées peuvent être transférées à d’autres sites de recharge des aquifères dans des environnements karstiques similaires en régions semi-arides.

Resumen

Los acuíferos kársticos de las regiones semiáridas están particularmente amenazados por la contaminación desde la superficie, especialmente durante las estaciones invernales cuando prevalecen lluvias extremadamente variables de altas intensidades. Un desafío adicional se plantea cuando se aplica gestión de la recarga de aguas pluviales, ya que los acuíferos kársticos muestran una alta variabilidad espacial de sus propiedades hidráulicas. En estos casos, se requieren conceptos de protección adaptados para abordar la interacción entre el agua superficial y subterránea. En este estudio se desarrolla un enfoque combinado de protección para la cuenca superficial de un sitio de recarga del acuífero gestionado en el embalse de Wala en Jordania y el campo de pozos Hidan aguas abajo, ambos sujetos a una frecuente contaminación bacteriológica. La variabilidad de la calidad del agua subterránea se evaluó mediante la correlación de los eventos de contaminación con las precipitaciones y la recarga desde el embalse. Ambos desencadenan el aumento del flujo del wadi, río abajo del reservorio por la generación de escorrentía de superficie y filtración de agua subterránea, respectivamente. Una prueba de trazadores verificó la trayectoria principal del flujo superficial en el subsuelo por infiltración a partir de estanques a lo largo de Wadi Wala. Se adaptó un mapa de vulnerabilidad intrínseca y de riesgo kárstico a las características regionales y se desarrolló para tener en cuenta la separación de las cuencas por la presa de Wala y la interacción del agua superficial y subterránea. La implementación de las zonas de protección propuestas para el pozo y el embalse es altamente recomendable, ya que los resultados sugieren un riesgo extremo de contaminación como resultado de la ganadería, la agricultura y la ocupación humana a lo largo del wadi. Los métodos aplicados pueden ser transferidos a otros sitios gestionados de recarga de acuíferos en ambientes kársticos similares de regiones semiáridas.

摘要

半干旱地区的岩溶含水层特别容易受到地表污染的威胁,尤其是在极度变化的高强度降雨盛行的冬季。在应用雨水作为补给的时候还有额外的挑战,因为岩溶含水层的水文特性空间变化很大。在这些情况下,需要适合的保护概念来强调地表水和地下水的相互作用。在本研究中,对约旦Wala储水地区管理的含水层补给地地表流域及下游的Hidan井场提出了一项组合保护方法,这两个区域常常受到微生物的污染。通过污染事件与降雨以及污染与储水地补给的对比,评价了水质的变化性。两者分别通过产生地表径流和地下水渗漏导致旱谷流向下游的水流增加。示踪实验证实了地表水流从沿Wala旱谷的池塘入渗进入地下的主要通道。针对区域特征对固有的岩溶脆弱性和风险图进行了改编并改进,来说明Wala大坝的流域划分和地表水与地下水的相互作用。强烈建议在井场和储水地建立提出的保护帶,因为研究结果表明,沿旱谷的畜牧耕作、耕地农业和人类侵占致使污染风险极高。这个实用方法可应用在半干旱区域类似岩溶环境种其它管理的含水层补给场地。.

Resumo

Aquíferos cársticos em regiões semiáridas são particularmente ameaçados por contaminação superficial, especialmente durante as estações de inverno quando prevalecem precipitações extremamente variáveis e de alta intensidade. Um desafio adicional é criado quando o gerenciamento de recarga da água da chuva é aplicado, já que os aquíferos cársticos apresentam uma alta variabilidade espacial de propriedades hidráulicas. Nestes casos, são necessários conceitos de proteção adaptados para abordar a interação entre águas superficiais e subterrâneas. Nesse estudo, desenvolveu-se uma abordagem de proteção combinada para a captação superficial na área de gerenciamento de recarga no reservatório Wala, na Jordânia, e no campo de poços Hidan, a jusante, ambos sujeitos à frequente contaminação bacteriológica. A variabilidade da qualidade das águas subterrâneas foi avaliada correlacionando os eventos de contaminação com a precipitação e recarga do reservatório. Ambos desencadeiam o aumento do fluxo do Wadi a jusante do reservatório pela geração do escoamento superficial e infiltração das águas subterrâneas, respectivamente. Um teste de traçadores verificou o caminho principal do fluxo superficial para o subsolo por infiltração de lagoas ao longo do Wadi Wala. Um mapa de vulnerabilidade intrínseca e risco do cárste foi adaptado às características regionais e desenvolvido para explicar a separação da bacia hidrográfica pela barragem de Wala e a interação entre águas superficiais e subterrâneas. A implementação das zonas de proteção propostas para o campo de poços e o reservatório é altamente recomendado, já que os resultados sugerem um risco extremo de contaminação resultante da pecuária, agricultura e ocupação humana ao longo do Wadi. Os métodos aplicados podem ser transferidos para outras áreas de gerenciamento de recarga em ambientes cártiscos semelhantes de regiões semiáridas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Adamat RAN, Foster IDL, Baban SMJ (2003) Groundwater vulnerability and risk mapping for the basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Appl Geogr 23(4):303–324

  • Al-Bakri J, Al-Jahmany Y (2013) Application of GIS and remote sensing to groundwater exploration in Al-Wala Basin in Jordan. J Water Res Protect 5:962–971

  • Al-Hanbali A, Kondoh A (2008) Groundwater vulnerability assessment and evaluation of human activity impact (HAI) within the Dead Sea groundwater basin, Jordan. Hydrogeol J 16(3):499–510

  • Al-Kuisi M, El-Naqa A, Hammouri N (2006) Vulnerability mapping of shallow groundwater aquifer using SINTACS model in the Jordan Valley area, Jordan. Environ Geol 50(5):651–667

  • Alsharhan AS, Rizk ZA; Nairn AEM, Bakhit DW, Alhajari SA (2001) Hydrogeology of an arid region: the Arabian Gulf and adjoining areas. Elsevier, Amsterdam

  • Amery HA, Wolf AT (2010) Water in the Middle East: a geography of peace. University of Texas Press, Austin, TX

  • Andreo B, Ravbar N, Vías JM (2009) Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeol J 17(3):749–758

  • Auckenthaler A, Huggenberger P (2013) Pathogene Mikroorganismen im Grund-und Trinkwasser: Transport–Nachweismethoden–Wassermanagement. Springer, Heidelberg, Germany

  • Awawdeh MM, Jaradat RA (2010) Evaluation of aquifers vulnerability to contamination in the Yarmouk River basin, Jordan, based on DRASTIC method. Arab J Geosci 3(3):273–282

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160

  • Bayer HJ, Hötzl H, Jado AR, Röscher B, Voggenreiter W (1988) Sedimentary and structural evolution of the northwest Arabian Red Sea margin. Tectonophysics 153(1):137–151

    Article  Google Scholar 

  • Behrens H, Beims U, Dieter H, Dietze G, Eikmann T, Grummt T, Hanisch H, Henseling H, Käß W, Kerndorff H, Leibundgut C, Müller-Wegener U, Rönnefahrt I, Scharenberg B, Schleyer R, Schloz W, Tilkes F (2001) Toxicological and ecotoxicological assessment of water tracers. Hydrogeol J 9(3):321–325

  • Bouwer H (2000) Integrated water management: emerging issues and challenges. Agric Water Manag 45(3):217–228. doi:10.1016/S0378-3774(00)00092-5.

  • Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10(1):121–142. doi:10.1007/s10040-001-0182-4

  • Bou-Zeid E, El-Fadel M (2002) Climate change and water resources in Lebanon and the Middle East. J Water Resour Plan Manag 128(5):343–355

  • Coxon C (2011) Agriculture and karst. In: Karst management. Springer, Heidelberg, Germany, pp 103–138

  • Daher W, Pistre S, Kneppers A, Bakalowicz M, Najem W (2011) Karst and artificial recharge: theoretical and practical problems. J Hydrol 408(3–4):189–202. doi:10.1016/j.jhydrol.2011.07.017.

  • Dillon P (2005) Future management of aquifer recharge. Hydrogeol J 13(1):313–316

  • Dillon PJ, Pavelic P, Page D, Beringen H, Ward J (2009) Managed aquifer recharge: an introduction. Waterlines Report Series 13, National Water Commission, Canberra, Australia

  • DoELG/EPA/GSI (1999) Groundwater protection schemes. Dept. of the Environ. and Local Government, EPA, Geol. Surv. of Ireland, Dublin, 24 pp

    Google Scholar 

  • Doerfliger N, Zwahlen F (1998) Practical guide: groundwater vulnerability mapping in karstic regions (EPIK). Swiss Agency for the Environment, Forests and Landscape (SAEFL), Bern, Switzerland, 56 pp

    Google Scholar 

  • El-Hakim M, Bakalowicz M (2007) Significance and origin of very large regulating power of some karst aquifers in the Middle East: implication on karst aquifer classification. J Hydrol 333(2):329–339

  • El-Naqa A (1993) Hydrological and hydrogeological characteristics of Wadi el Mujib catchment area. Jordan Environ Geol 22(3):257–271

    Article  Google Scholar 

  • El-Naqa A (2004) Aquifer vulnerability assessment using the DRASTIC model at Russeifa landfill, northeast Jordan. Environ Geol 47(1):51–62

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Tracey H, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574

  • Gassen N, Al-Hyari M, Hanbali B, Obaiat A, Kirsch H, Toll M, Xanke J (2013) Delineation of groundwater protection zones for Hidan well field. Technical report no. 3. Project ‘Water Aspects in Land-Use-Planning’, BGR and MWI, Amman, Jordan, 98 pp

  • Goldscheider N, Klute M, Sturm S, Hötzl H (2000) The PI method: a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol 46(3):157–166

  • Goldscheider N, Meiman J, Pronk M, Smart C (2008) Tracer tests in karst hydrogeology and speleology. Int J Speleol 37(1):3

  • Hammouri N, El-Naqa A (2008) GIS based hydrogeological vulnerability mapping of groundwater resources in Jerash area-Jordan. Geofis Int 47(2):85–97

  • Heinz B, Birk S, Liedl R, Geyer T, Straub KL, Andresen J, Bester K, Kappler A (2009) Water quality deterioration at a karst spring (Gallusquelle, Germany) due to combined sewer overflow: evidence of bacterial and micro-pollutant contamination. Environ Geol 57(4):797–808

    Article  Google Scholar 

  • Joodaki G, Wahr J, Swenson S (2014) Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour Res 50(3):2679–2692

  • Käss W (1998) Tracing technique in geohydrology. Balkema, Rotterdam, 581 pp

    Google Scholar 

  • Käss W (2004) Geohydrologische Markierungstechnik {Hydrogeological tracer techniques]. Borntraeger, Berlin, 557 pp

    Google Scholar 

  • Kliot N (2005) Water resources and conflict in the Middle East. Routledge, Abingdon, UK

  • Laimer HJ (2005) Die Erfassung der Karstgrundwasser-Vulnerabilität mit der Methode „VURAAS” [The detection of karst groundwater vulnerability using “VURAAS”]. Grundwasser 10(3):167–176

  • Leibundgut C, Maloszewski P, Külls C (2011) Tracers in hydrology. Wiley, Chichester, UK

  • Margane A, Hobler M, Almomani M, Subah A (2002) Contributions to the hydrogeology of northern and central Jordan. Geologisches Jahrbuch, series C, vol C 68. Schweitzbart, Stuttgart, Germany, 52 pp

  • Margane A, Borgstedt A, Hamdan I, Subah A, Hajali Z (2009) Delineation of surface water protection zones for Wala Dam. Tech Rep 12, MWI, Amman, Jordan, 126 pp

  • Margane A, Subah A, Hamdan I, Hajali Z, Almomani T (2010) Delineation of groundwater protection zones for the springs in Wadi Shuayb. Groundwater Resources Management-technical report 14, 98 pp. doi:10.13140/RG.2.1.5125.4640

  • MWI (2004) National Water Master Plan (NWMP). Ministry for Water and Irrigation, Amman, Jordan

  • MWI (2006) Drinking water resources protection guidelines. Jordanian-German Technical Cooperation Project Groundwater Resources Management, Unofficial translation, MWI, Amman, Jordan

  • Nguyet VTM, Goldscheider N (2006) A simplified methodology for mapping groundwater vulnerability and contamination risk, and its first application in a tropical karst area, Vietnam. Hydrogeol J 14(8):1666–1675

  • Ravbar N, Goldscheider N (2007) Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsol 36(6):397–411

  • Robert T, Caterina D, Deceuster J, Kaufmann O, Nguyen F (2012) A salt tracer test monitored with surface ERT to detect preferential flow and transport paths in fractured/karstified limestones. Geophysics 77(2):B55–B67

  • Rompré A, Servais P, Baudart J, de-Roubin MR, Laurent P (2002) Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods 49(1):31–54

  • Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Chang Biol 11(10):1577–1593

  • Schudel B, Biaggi D, Dervey T, Kozel R, Müller I, Ross JH, Schindler U (2002) Einsatz künstlicher tracer in der Hydrogeologie: Praxishilfe [Use of artificial tracers in hydrogeology: a practical guide]. Bundesamt für Wasser und Geologie, Bern, Switzerland

    Google Scholar 

  • Sowers J, Vengosh A, Weinthal E (2011) Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim Chang 104(3–4):599–627

    Article  Google Scholar 

  • Toride N, Leij FJ, van Genuchten MT (1999) The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Research report no. 137, California: US Salinity Laboratory, Riverside, CA

  • Vías JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeol J 14(6):912–925

  • Vidal M, Melgar J, Lopez A, Santoalla MC (2000) Spatial and temporal hydrochemical changes in groundwater under the contaminating effects of fertilizers and wastewater. J Environ Manag 60(3):215–225

  • Voss KA, Famiglietti JS, Lo M, Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-western Iran region. Water Resour Res 49(2):904–914

  • Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20)

  • Werz H, Hötzl H (2007) Groundwater risk intensity mapping in semi-arid regions using optical remote sensing data as an additional tool. Hydrogeol J 15(6):1031–1049

  • Xanke J, Goeppert N, Sawarieh A, Liesch T, Kinger J, Ali W, Hötzl H, Hadidi K, Goldscheider N (2015) Impact of managed aquifer recharge on the chemical and isotopic composition of a karst aquifer, Wala reservoir, Jordan. Hydrogeol J 23(5):1027–1040

  • Xanke J, Jourde H, Liesch T, Goldscheider N (2016) Numerical long-term assessment of managed aquifer recharge from a reservoir into a karst aquifer in Jordan. J Hydrol. doi:10.1016/j.jhydrol.2016.06.058

  • Zwahlen F (2004) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report (COST action 620). European Commission, Directorate-General XII Science. Research and Development, Brussels, 297 pp

Download references

Acknowledgements

The authors thank the Ministry of Water and Irrigation of Jordan (MWI) for the provision of the data, the Jordan Valley Authority (JVA) and the Water Authority of Jordan (WAJ) for their support during field work. Furthermore, the German Federal Ministry of Education and Research (BMBF) is acknowledged for funding the SMART Project (Sustainable Management of Available Water Resources with Innovative Technologies) (FKZ 02WM1079-1086 and FKZ02WM1211-1212). The authors also thank the Federal Institute for Geosciences and Natural Resources (BGR) for a successful cooperation in Jordan. Special thanks go to Prof. Tim Bechtel for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Xanke.

Electronic supplementary material

ESM 1

(PDF 647 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xanke, J., Liesch, T., Goeppert, N. et al. Contamination risk and drinking water protection for a large-scale managed aquifer recharge site in a semi-arid karst region, Jordan. Hydrogeol J 25, 1795–1809 (2017). https://doi.org/10.1007/s10040-017-1586-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1586-0

Keywords

Navigation