Skip to main content

Advertisement

Log in

Using multiple environmental methods to estimate groundwater discharge into an arid lake (Dakebo Lake, Inner Mongolia, China)

Apport des méthodes environnementales multiples pour estimer la décharge des eaux souterraines dans un lac en climat aride (le Lac Dakebo, Mongolie intérieure, Chine)

Uso de métodos ambientales múltiples para estimar la descarga de aguas subterráneas en un lago árido (Dakebo Lake, Inner Mongolia, China)

采用多重环境方法估算进入到干旱区湖(中国内蒙古Dakebo湖)的地下水排泄量

Utilização de vários métodos ambientais para estimar a descarga das águas subterrâneas em um lago árido (Lago Dakebo, Mongólia Interior, China)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

It is important to have both a qualitative and quantitative understanding of the hydraulic exchange between groundwater and surface water to support the development of effective management plans for sustainable use of water resources. Groundwater is a major source of surface-water recharge and plays an important role in maintaining the integrity of ecosystems, especially within wetlands in semi-arid regions. The Ordos Desert Plateau of Inner Mongolia (China) is a vulnerable ecosystem that suffers from an extreme lack of water. The hydraulic exchange between groundwater and lake water in Dakebo Lake (the largest of hundreds of lakes on the Ordos Desert Plateau) was evaluated using multiple environmental methods. Continuous monitoring of the groundwater and lake-water levels indicated that the lake was recharged vertically by groundwater. Application of hydrodynamic and temperature tracing methods to the western side of the lake indicated that the rate of groundwater discharge to the lake was about 2 × 10−6 to 3 × 10−6 m/s in spring, summer, and autumn, but that there was no recharge in winter because the hypolentic zone (HZ) was frozen. Mixing ratios of groundwater and lake water in the HZ, estimated from the 18O and 2H ratios, showed that there were spatial variations in the hydrodynamic exchange between groundwater and lake water within the HZ.

Résumé

Il est important d’avoir à la fois une compréhension qualitative et quantitative des échanges hydrauliques entre les eaux souterraines et les eaux de surface pour soutenir l’élaboration de plans de gestion efficaces pour une utilisation durable des ressources en eau. L’eau souterraine constitue une source majeure de recharge des eaux de surface et joue un rôle important dans le maintien de l’intégrité des écosystèmes, en particulier dans les zones humides dans les régions semi-arides. Le Plateau du Désert de l’Ordos en Mongolie intérieure (Chine) est un écosystème vulnérable qui souffre d’un manque important d’eau. L’échange hydraulique entre l’eau souterraine et l’eau du lac Dakebo (le plus grand des centaines de lacs sur le plateau du Désert de l’Ordos) a été évaluée en utilisant des méthodes environnementales multiples. La surveillance continue des niveaux d’eau souterraine et du lac a indiqué que le lac était rechargé verticalement par les eaux souterraines. L’application de méthodes hydrodynamiques et de traçage par la température sur la rive occidentale du lac indique que le taux d’apport des eaux souterraines au lac était d’environ 2 × 10−6 à 3 × 10−6 m/s au printemps, été, et à l’automne, mais qu’il n’y avait pas de recharge en hiver du fait que la zone hypolentique (HZ) est gelée. Les rapports de mélange des eaux souterraines et de l’eau du lac dans la HZ, estimée à partir des rapports isotopiques de l’oxygène 18O et du Deutérium 2H, montrent qu’il y a des variations spatiales de l’échange hydrodynamique entre les eaux souterraines et l’eau du lac au sein de la HZ.

Resumen

Para apoyar el desarrollo de planes eficaces de gestión para el uso sostenible de los recursos hídricos es importante tener un conocimiento cualitativo y cuantitativo del intercambio hidráulico entre agua subterránea y agua superficial. El agua subterránea es la principal fuente de recarga del agua superficial y juega un papel significativo en el mantenimiento de la integridad de los ecosistemas, especialmente de los humedales en las regiones semiáridas. El Ordos Desert Plateau de Inner Mongolia (China) es un ecosistema vulnerable que sufre de una extrema falta de agua. El intercambio hidráulico entre el agua subterránea y el agua del lago en el Lago Dakebo (el más grande de cientos de lagos en el Ordos Desert Plateau) se evaluó utilizando métodos ambientales múltiples. El monitoreo continuo del agua subterránea y de los niveles de agua del lago indica que el lago es recargado verticalmente por el agua subterránea. La aplicación de métodos hidrodinámicos y trazadores de temperatura para el lado occidental del lago indica que la velocidad de descarga del agua subterránea hasta el lago era de aproximadamente 2 × 10−6 a 3 × 10−6 m/s en primavera, verano y otoño, pero no existía ninguna recarga en invierno debido a que la zona hipoléntica (HZ) estaba congelada. Las proporciones de mezcla del agua subterránea y el agua en el lago HZ, estimada a partir de las relaciones de 18O y 2H, mostraron que no hubo variaciones espaciales en el intercambio hidrodinámico entre el agua subterránea y el agua del lago dentro de la HZ.

摘要

定性和定量了解地下水和地表水之间的水力交换对支持水资源可持续利用的有效管理计划非常重要。地下水是地表水补给的主要水源,在维持生态系统完整性发挥着重要作用,特别是半干旱地区湿地内。(中国)内蒙古鄂尔多斯沙漠高原是一个脆弱的生态系统,极度缺水。采用多重环境方法评估了Dakebo湖(鄂尔多斯沙漠高原上几百个湖泊中最大的一个)地下水和湖水之间水力交换。地下水位和湖水水位的连续监测表明,湖由地下水垂直补给。湖西边的水动力和温度示踪方法的应用表明,春季、夏季和秋季地下水排泄到湖的水量大约为2 × 10−6 to 3 × 10−6 m/s,但由于冬季潜流带封冻,故没有补给。从18O和 2H比例估算得出的潜流带地下水和湖水的混合比例显示,潜流带的地下水和湖水之间的水动力交换有着空间上的变化。

Resumo

É importante ter uma compreensão qualitativa e quantitativa da troca hidráulica entre águas subterrâneas e águas superficiais para apoiar o desenvolvimento de planos de manejo eficazes para o uso sustentável dos recursos hídricos. A água subterrânea é a maior fonte de recarga da água superficial e desempenha um papel importante na manutenção da integridade dos ecossistemas, especialmente dentro de zonas úmidas em regiões semiáridas. O planalto desértico de Ordos, na Mongólia Interior (China), é um ecossistema vulnerável que sofre com a extrema falta de água. A troca hidráulica entre as águas subterrâneas e as águas lênticas do lago Dakebo (o maior dentre centenas de lagos no planalto desértico de Ordos) foi avaliada usando vários métodos ambientais. O monitoramento contínuo dos níveis de água subterrânea e das águas do lago mostrou que o lago é recarregado verticalmente pela água subterrânea. Aplicação de métodos hidrodinâmicos e de rastreamento de temperatura, na porção ocidental do lago, indicaram que a taxa de descarga de água subterrânea para o lago foi de 2 × 10−6 a 3 × 10−6 m/s na primavera, verão e outono, não havendo recarga no inverno, pois a zona hipolêntica (ZH) estava congelada. A proporção de mistura de águas subterrâneas e de água do lago na ZH, calculada a partir dos índices de 18O e 2H, mostrou que houveram variações espaciais na troca hidrodinâmica entre as águas subterrâneas e as água do lago dentro da ZH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Cao Y (2009) Groundwater circulation patterns of typical lake area in northern Ordos cretaceous basin (in Chinese). MSc Thesis, Jilin University, China

  • Carey SK, Quinton WL (2005) Evaluating runoff generation during summer using hydrometric, stable isotope and hydrochemical methods in a discontinuous permafrost alpine catchment. Hydrol Process 19(1):95–114

    Article  Google Scholar 

  • Constantz JE, Niswonger RG, Stewart AE (2008) Analysis of temperature gradients to determine stream exchanges with ground water. Econ Hist Rev 23(1):96–111

    Google Scholar 

  • Du SH, Su XS, Zhang WJ (2013) Effective storage rates analysis of groundwater reservoir with surplus local and transferred water used in Shijiazhuang City, China. Water Environ J 27:157–169

    Article  Google Scholar 

  • Elsawwaf M, Feyen J, Batelaan O, Bakr M (2014) Groundwater–surface water interaction in Lake Nasser, South Egypt. Hydrol Process 28:414–430

    Article  Google Scholar 

  • Essaid HI, Zamora CM, McCarthy KA, Vogel JR, Wilson JT (2008) Using heat to characterize streambed water flux variability in four stream reaches. J Environ Qual 37(3):1010–1023

    Article  Google Scholar 

  • Fan W, Zhang GX, Li RR (2012) Review of groundwater–surface water interactions in wetlands. Adv Earth Sci 27:413–423

    Google Scholar 

  • Gandy CJ, Smith JWN, Jarvis AP (2007) Attenuation of mining-derived pollutants in the hyporheic zone: a review. Sci Total Environ 373:435–446

    Article  Google Scholar 

  • Gordon RP, Lautz LK, Briggs MA, Mckenzie JM (2012) Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program. J Hydrol 420(4):142–158

    Article  Google Scholar 

  • Grimm NB, Fisher SG (1984) Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia 111(3):219–228

    Article  Google Scholar 

  • Guo J (2012) Research on sulfur biogeochemistry in hypolentic zone of lake in Kubuqi Desert plateau area. Jilin University, Changchun, China

  • Hatch CE, Fisher AT, Revenaugh JS, Constantz J, Ruehl C (2006) Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: method development. Water Resour Res 42(10):2405–2411

    Article  Google Scholar 

  • Hunt RJ, Krabbenhoft DP, Anderson MP (1996) Groundwater inflow measurements in wetland systems. Water Resour Res 32(3):495–507

    Article  Google Scholar 

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater–surface water interactions: a review. Hydrol Earth Syst Sci Discuss 10(6):873–887

    Article  Google Scholar 

  • Keery J, Binley A, Crook N, Smith JWN (2007) Temporal and spatial variability of groundwater–surface water fluxes: development and application of an analytical method using temperature time series. J Hydrol 336(1–2):1–16

    Article  Google Scholar 

  • Lee J, Robinson C, Couture RM (2014) Effect of groundwater–lake interactions on arsenic enrichment in freshwater beach aquifer. Environ Sci Technol 48:10174–10181

    Article  Google Scholar 

  • Li PY, Wu JH, Qian H (2016) Preliminary assessment of hydraulic connectivity between river water and shallow groundwater and estimation of their transfer rate during dry season in the Shidi River, China. Environ Earth Sci 75(2):99

    Article  Google Scholar 

  • Marimuthu S, Reynolds DA, La Salle CLG (2005) A field study of hydraulic, geochemical and stable isotope relationships in a coastal wetlands system. J Hydrol 315(1):93–116

    Article  Google Scholar 

  • Mccain WD (1991) Reservoir-fluid property correlations: state of the art (includes associated papers 23583 and 23594 ). SPE Reserv Eng 6:266–272

    Article  Google Scholar 

  • Oyarzún R, Barrera F, Salazar P, Maturana H, Oyarzún J (2014) Multi-method assessment of connectivity between surface water and shallow groundwater: the case of Limarí River basin, north-central Chile. Hydrogeol J 22(8):1857–1873

    Article  Google Scholar 

  • Post V, Kooi H, Simmons C (2007) Using hydraulic head measurements in variable-density ground water flow analyses. Ground Water 45(6):664–671

    Article  Google Scholar 

  • Rau GC, Andersen MS, McCallum AM, Roshan H, Acworth RI (2014) Heat as a tracer to quantify water flow in near-surface sediments. Earth Sci Rev 129:40–58

    Article  Google Scholar 

  • Rautio A, Korkka-Niemi K (2015) Chemical and isotopic tracers indicating groundwater/surface-water interaction within a boreal lake catchment in Finland. Hydrogeol J 23:687–705

    Article  Google Scholar 

  • Rodríguez-Rodríguez M, Benavente J, Julián CS, Martos FM (2006) Estimation of ground-water exchange with semi-arid playa lakes (Antequera region, southern Spain). J Arid Environ 66(2):272–289

    Article  Google Scholar 

  • Sedell JR, Reeves GH, Hauer FR, Stanford JA, Hawkins CP (1990) Role of refugia in recovery from disturbances: modern fragmented and disconnected river systems. Environ Manag 14(5):711–724

    Article  Google Scholar 

  • Shaw GD, White ES, Gammons CH (2013) Characterizing groundwater–lake interactions and its impact on lake water quality. J Hydrol 492:69–78

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10(1):52–67

    Article  Google Scholar 

  • Stallman RW (1965) Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J Geophys Res 70:2821–2827

    Article  Google Scholar 

  • Storey RG, Howard KWF, Dudley WD (2003) Factors controlling riffle-scale hyporheic exchange flows and their seasonal changes in a gaining stream: a three-dimensional groundwater flow model. Water Resour Res 39(39):180–189

    Google Scholar 

  • Su XS, Wang XY, Wan YY, Cao Y (2011) Research on interaction of surface water and groundwater of Dakebo Lake watershed. Yellow River 33(7):73–75

    Google Scholar 

  • Su XS, Xu W, Du SH (2014a) In situ infiltration test using a reclaimed abandoned river bed: managed aquifer recharge in Shijiazhuang City, China. Environ Earth Sci 71(12):5017–5025

    Article  Google Scholar 

  • Su XS, Xu W, Du SH (2014b) Responses of groundwater vulnerability to artificial recharge under extreme weather conditions in Shijiazhuang City, China. J Water Supply Res Technol 63(3):224–238

    Article  Google Scholar 

  • Su XS, Yuan WZ, Xu W, Du SH (2015) A groundwater vulnerability assessment method for organic pollution: a validation case in the Hun River basin, northeastern China. Environ Earth Sci 73(1):467–480

    Article  Google Scholar 

  • Triska FJ, Duff JH, Avanzino RJ (1993) Patterns of hydrological exchange and nutrient transformation in the hyporheic zone of a gravel-bottom stream: examining terrestrial—aquatic linkages. Freshw Biol 29(2):259–274

    Article  Google Scholar 

  • Wang X (2011) Research on groundwater circulation and hydrochemical evolution in Dakebo lake Watershed in Ordos Basin. Jilin University, Changchun, China

  • Wang X, Ouyang Z, Miao H (2003) Formation, evolution and protection of wetland ecosystems in arid region, northwestern China. Territory Nat Res Study 4:52–54

    Google Scholar 

  • Yin L, Hou G, Su XS, Wang D, Dong J, Hao Y, Wang X (2011) Isotopes (δD and δ18O) in precipitation, groundwater and surface water in the Ordos Plateau, China: implications with respect to groundwater recharge and circulation. Hydrogeol J 19(2):429–443

    Article  Google Scholar 

  • Zalewski M (2000) Ecohydrology: the scientific background to use ecosystem properties as management tools toward sustainability of water resources. Ecol Eng 16(1):1–8

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Fund Project “Research in biogeochemical behavior of sulfur within desert plateau hypolentic zone” (Grant No. 41073054). The authors would like to thank the editor, associate editor, Perry de Louw and the anonymous reviewers for their thoughtful and constructive comments, which helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanghai Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Cui, G., Du, S. et al. Using multiple environmental methods to estimate groundwater discharge into an arid lake (Dakebo Lake, Inner Mongolia, China). Hydrogeol J 24, 1707–1722 (2016). https://doi.org/10.1007/s10040-016-1439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1439-2

Keywords

Navigation