Skip to main content
Log in

Multi-method assessment of connectivity between surface water and shallow groundwater: the case of Limarí River basin, north-central Chile

Evaluation multiple de la connectivité entre les eaux de surface et les eaux souterraines peu profondes: le cas du bassin versant de la Rivière Limari, partie central nord du Chili

Evaluación multi-método de la conectividad entre agua superficial y agua subterránea somera: el caso de la Cuenca del Río Limarí, centro norte de Chile

地表水和地下水连通性的多方法分析:智利中北部Limari河流域研究案例

Avaliação multi-método da conetividade entre águas superficiais e águas subterrâneas freáticas: o caso da bacia hidrográfica do Rio Limarí, centro-norte do Chile

Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A study that tests the applicability and consistency of independent but complementary approaches in the assessment of interactions between surface water and shallow groundwater within a water-stressed basin is described. The mostly agricultural Limarí basin in arid north-central Chile was chosen as a suitable case study. The analyses involved: (1) a connectivity index method, (2) hydrochemistry, and (3) water isotopic geochemistry. Chemical and isotopic data were obtained from two sampling campaigns conducted in April (fall) and December (summer) of 2011 in 22 sampling locations, which included surface water and groundwater. The results obtained by each of the methodologies were mutually consistent and indicate high connectivity conditions. Additionally, the relative contribution by different sources was assessed through end-member mixing analysis, and for reaches of the river that showed gaining conditions, the contribution of groundwater inflow to stream discharge was estimated. It is suggested that this multi-method approach is useful for the characterization of surface-water–groundwater interactions, since it at least represents a suitable starting point for obtaining basic information on these relationships. Thus, it may become the base for further studies in arid and semi-arid basins facing water management challenges.

Résumé

Une étude qui teste l’applicabilité et la cohérence des approches indépendantes mais complémentaires dans l’évaluation des interactions entre les eaux de surface et les eaux souterraines peu profondes au sein d’un bassin versant sous stress hydrique est décrite. Le bassin versant de la Limari essentiellement agricole dans les zones arides de la partie centrale nord du Chili a été choisi en tant que cas d’étude approprié. Les analyses concernées : (1) méthode de l’indice de connectivité, (2) hydrochimie, et (3) géochimie isotopique de l’eau. Les données chimiques et isotopiques ont été obtenues à partir de deux campagnes d’échantillonnage effectuées en avril (automne) et décembre (été) de 2011, avec 22 points d’échantillonnage, comprenant des eaux de surface et des eaux souterraines. Les résultats obtenus par chacune des méthodes sont cohérents entre elles et indiquent des conditions de connectivité élevée. De plus, la contribution relative des différentes sources a été évaluée à l’aide de l’analyse de mélange dite d’élément d’extrémité (end member analysis EMMA), et pour des tronçons de la rivière montrant des conditions de gain, la contribution des apports d’eaux souterraines aux écoulements de surface a été estimée. Il est suggéré que cette approche multi procédé est utile pour la caractérisation des interactions entre les eaux de surface et les eaux souterraines, car elle représente au moins un point de départ approprié pour obtenir des informations de base sur ces relations. Ainsi, il peut devenir la base pour d’autres études dans des bassins arides et semi-arides confrontés à des défis de gestion de l’eau.

Resumen

Se describe un estudio que prueba la aplicabilidad y consistencia en aproximaciones independientes pero complementarias en la evaluación de las interacciones entre agua superficial y agua subterránea somera dentro de una cuenca con estrés hídrico. Se eligió a la cuenca de Limari, mayormente agrícola en el árido centro norte de Chile como un caso de estudio apropiado. Los análisis involucraron: (1) un método del índice de conectividad, (2) hidroquímica, y (3) geoquímica isotópica del agua. Los datos químicos e isotópicos fueron obtenidos de dos campañas de muestreo realizadas en abril (otoño) y diciembre (verano) de 2011 en 22 sitios de muestreo, que incluyeron agua superficial y agua subterránea. Los resultados obtenidos por cada una de las metodologías fueron mutuamente consistentes e indican condiciones altas de conectividad. Se evaluó adicionalmente, la contribución relativa por diferentes fuentes a través del análisis de mezclas de miembros finales, y para sectores del río que mostraron condiciones efluentes, se estimó la contribución del flujo entrante de agua subterránea por la descarga en la corriente. Se sugiere que esta aproximación multi método es útil para la caracterización de las interacciones agua superficial – agua subterránea, ya que al menos representa un punto de partida apropiado para la obtención de información básica sobre estas relaciones. Por lo tanto, puede convertirse en la base para estudios ulteriores en cuencas áridas y semiáridas frente a los desafíos de la gestión del agua.

摘要

本文论述了缺水流域内地表水和浅层地下水相互作用评价中测试独立的、并且具有互补性方法的适用性和一致性的研究成果。选择智利干旱的中北部主要为农业区的Limari流域作为适当的研究实例。分析涉及:(1)连通性指数方法,(2)水文化学,(3)水同位素地球化学。从2011年4月(秋季)和12月(夏季)的采样行动中获取了化学和同位素资料,采样地点22处,样品包括地表水和地下水。每种方法得到的结果相互一致,表明连通性很高。另外,通过端元混合分析评价了不同来源的相关贡献率,对显示具有盈水条件的河段,估算了地下水流入到河流排泄的贡献率。表明,这种多 重方法的途径对描述地表水和地下水相互作用非常有用,因为这种方法至少为获取这些相互关系的基本信息展示了合适的起点。因此,这种方法成为进一步研究面临着水管理挑战的干旱、半干旱流域的基础。

Resumo

Descreve-se um estudo que afere a aplicabilidade e coerência de abordagens independentes, contudo complementares, para a avaliação de interações entre águas superficiais e águas subterrâneas de pouca profundidade, numa bacia hidrográfica que evidencia stress hídrico. Foi selecionada a bacia do rio Limarí, maioritariamente agrícola e localizada na zona árida no centro-norte do Chile, como um estudo de caso adequado. As análises incluíram: (1) um método de índice de conetividade, (2) hidroquímica, e (3) geoquímica isotópica da água. Os dados químicos e isotópicos foram obtidos durante duas campanhas de amostragem realizadas em abril (outono) e dezembro (verão) de 2011, em 22 locais, que incluíram águas superficiais e subterrâneas. Os resultados obtidos por cada uma das metodologias foram coerentes entre si e indicam condições de alta conetividade. Avaliou-se também a contribuição relativa de cada uma das origens de água através da análise de mistura dos "membros finais" (end-members), e, nos troços do rio que evidenciavam condições efluentes, estimou-se a contribuição do caudal de base (água subterrânea) no caudal total do rio. Sugere-se que esta abordagem multi-método é útil para a caraterização das interações entre águas superficiais e subterrâneas, uma vez que representa, no mínimo, um ponto de partida adequado para a obtenção de informações básicas sobre estas interações. Deste modo poderá constituir a base para futuros estudos em bacias áridas e semi-áridas que enfrentam desafios de gestão dos recursos hídricos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Alvarez P, Oyarzún R (2006) Interacción río–acuífero en zonas áridas: contexto legal y análisis de casos [Aquifer–river interaction in arid zones: legal framework and case study]. VIII Congreso Latino-Americano de Hidrología Subterránea (ALSHUD), Asunción, Paraguay, September 2006

  • Andersen MS, Acworth RI (2009) Stream-aquifer interactions in the Mules Creek catchment, Namoi Valley, New South Wales, Australia. Hydrogeol J 17:2005–2021

    Article  Google Scholar 

  • Astel A, Tsakovski S, Barbieri P, Simeonov V (2007) Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res 41:4566–4578

    Article  Google Scholar 

  • Bailly-Comte V, Jourde H, Pistre S (2009) Conceptualization and classification of groundwater-surface water hydrodynamic interactions in karst watersheds. J Hydrol 376:456–462

    Article  Google Scholar 

  • Braaten R, Gates G (2003) Groundwater-surface water interaction in inland New South Wales: a scoping study. Water Sci Technol 48:215–224

    Google Scholar 

  • Brodie R, Sundaram B, Tottenham R, Hostetler S, Ransley T (2007) An overview of tools for assessing groundwater–surface water connectivity. Bureau of Rural Sciences, Canberra, Australia

    Google Scholar 

  • Burtnett WC, Peterson RN, Santos IR, Hicks RW (2010) Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams. J Hydrol 380:298–304

    Article  Google Scholar 

  • CIREN (2011) Catastro frutícola: principales resultados—región de Coquimbo [Fruit tree census: main results—Coquimbo region]. Available at http://www.ingenierosagronomos.cl/pcomciac/wp-content/uploads/2011/06/Catastro-Frut%C3%ADcola-IV-Regi%C3%B3n-de-Coquimbo.pdf. Accessed 15 Jan 2013

  • Clesceri LS, Greenberg AE, Eaton AD (1999) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • CONAMA (2006) Estudio de la variabilidad climática en Chile para el siglo XXI [Climate variability study for Chile in the XXI century]. Comisión Nacional del Medio Ambiente, Santiago, Chile

    Google Scholar 

  • Constantz J, Cox MH, Su GW (2003) Comparison of heat and bromide as groundwater tracers near streams. Ground Water 41:647–656

    Article  Google Scholar 

  • Cook P (2013) Estimating groundwater discharge to rivers from river chemistry surveys. Hydrol Process 27:3694–3707

    Article  Google Scholar 

  • Cook P, Favreau G, Dighton J, Tickell S (2003) Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. J Hydrol 277:74–88

    Article  Google Scholar 

  • Cook P, Lamontagne S, Berhane D, Clark JF (2006) Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6. Water Resour Res 42, W10411. doi:10.1029/2006WR004921

    Article  Google Scholar 

  • Demirel Z, Güler C (2006) Hydrogeochemical evolution of groundwater in a Mediterranean coastal aquifer, Mersin-Erdemli basin (Turkey). Environ Geol 49:477–487

  • DGA (2004) Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivos de calidad. Cuenca del Río Limarí [Evaluation and classification of water bodies according quality objectives. Limarí watershed]. Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile

  • DGA (2008) Evaluación de los recursos hídricos subterráneos de la cuenca del río Limarí. Informe Técnico N°268 [Assessment of groundwater resources in the Limarí basin]. Technical report no. 268, Departamento de Administración de Recursos Hídricos, Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile

  • DGA (2012) Catastro de derechos de aprovechamiento de aguas [Water rights information]. Available at www.dga.cl/administracionrecursoshidricos/derechosconstituidos/paginas/default.aspx.. Accessed 17 Jan2013

  • Dor N, Syafalni S, Abustan I, Rahman M, Nazri M, Mostafa R, Mejus L (2011) Verification of surface–groundwater connectivity in an irrigation canal using geophysical, water balance and stable isotope approaches. Water Resour Manag 25:2837–2853

    Article  Google Scholar 

  • Friedman I, Smith GI, Gleason JD, Warden A, Harris JM (1992) Stable isotope composition of waters in Southeastern California: 1. modern precipitation. J Geophys Res 97:5795–5812

  • Fullagar I, Brodie R, Sundaram B, Hostetler S, Baker P (2006) Managing connected surface water and groundwater resources. Science for Decision Makers. Australian Government, Bureau of Rural Sciences, Canberra, Australia

  • Geoscience Australia (2013) Groundwater–surface water connectivity. Available at http://www.ga.gov.au/groundwater/understanding-groundwater-resources/groundwater-surface-water-connectivity.html. Accessed 11 Mar 2014

  • Green G, Stewart S (2008) Interactions between groundwater and surface water systems in the Eastern Mount Lofty Ranges, South Australia, DWLBC Report 2008/27. Dept. of Water, Land and Biodiversity Conservation, Gov. of South Australia, Canberra, Australia

    Google Scholar 

  • Guggenmos MR, Daughney CJ, Jackson BM, Morgenstern U (2011) Regional-scale identification of groundwater–surface water interaction using hydrochemistry and multivariate statistical methods, Wairarapa Valley, New Zealand. Hydrol Earth Syst Sci 15:3383–3398

    Article  Google Scholar 

  • Güler G, Thyne G, McCray J, Turner A (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474

    Article  Google Scholar 

  • Ivkovic K (2009) A top-down approach to characterize aquifer–river interaction processes. J Hydrol 365:145–155

    Article  Google Scholar 

  • INE (2007) Censo Agropecuario y Forestal 2007 Resultados por Comuna [Agricultural and forestry census]. Available at http://www.ine.cl/canales/chile_estadistico/censos_agropecuarios/censo_agropecuario_07_comunas.php. Accessed 25 May 2012

  • Jolly ID, McEwan KL, Holland KL (2008) A review of groundwater–surface water interactions in arid/semiarid wetlands and the consequences of salinity for wetland ecology. Ecohydrology 1:43–58

    Article  Google Scholar 

  • Jourde H, Rochette R, Blanc M, Brisset N, Ruelland D, Freixas G, Oyarzún R (2012) Characterization of the interactions between subterranean and superficial fluxes within an Andean catchment as a function of the spatio–temporal variability of climate. La Houille Blanche 2:18–25

    Article  Google Scholar 

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater–surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887

    Article  Google Scholar 

  • Konrad C (2006) Location and timing of river-aquifer exchanges in six tributaries to the Columbia River in the Pacific Northwest of the United States. J Hydrol 329:444–470

    Article  Google Scholar 

  • King AC, Raiber M, Cox ME (2014) Multivariate statistical analysis of hydrochemical data to assess alluvial aquifer–stream connectivity during drought and flood: Cresbrook Creek, southeast Queensland, Australia. Hydrogeol J 22:481–500

  • LiuY Y, Yamanaka T (2012) Tracing groundwater recharge sources in a mountain-plain transitional area using stable isotopes and hydrochemistry. J Hydrol 464–465:116–126

  • Mas-Pla J, Menció A, Marsiñach A (2013) Basement groundwater as a complementary resource for overexploited stream-connected alluvial aquifers. Water Resour Manag 27:293–303

    Article  Google Scholar 

  • Núñez J, Rivera D, Oyarzún R, Arumí JL (2013) Influence of Pacific Ocean multidecadal variability on the distributional properties of hydrological variables in north-central Chile. J Hydrol 501:227–240

    Article  Google Scholar 

  • Newman BD, Vivoni ER, Groffman AR (2006) Surface water-groundwater interactions in semiarid drainages of the American Southwest. Hydrol Process 20:3371–3394

    Article  Google Scholar 

  • Oyarzún R, Jofré E, Maturana H, Oyarzún J, Aguirre E (2013) Use of 222Rn as a simple tool for surface water–groundwater connectivity assessment: a case study in the arid Limarí basin, north-central Chile. Water Environ J doi:10.1111/wej.12057

  • Parsons S, Evans R, Hoban M (2008) Surface–groundwater connectivity assessment: a report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project. CSIRO, Clayton, Australia

  • Ransley T, Tottenham R, Sundaram B, Brodie R (2007) Development of method to map potential stream aquifer connectivity: a case study in the Borders rivers catchment. Bureau of Rural Sciences, Dept. of Agriculture, Fisheries and Forestry, Australian Gov., Canberra, Australia

  • SERPLAC, DGA, ONU, CORFO (1979) Hidrogeología de la cuenca del río Limarí: investigación de recursos hidráulicos en la IV región [Limarí basin hydrogeology: research on hydraulic resources in the Region IV]. Proyecto CHI-535, SERPLAC, DGA, ONU, CORFO, Santiago, Chile

  • Shrestha S, Kazama F (2007) An assessment of stream water quality of the Río San Juan, Nuevo Leon, Mexico, 1995–1996. J Environ Qual 31:1256–1265

    Google Scholar 

  • Shi JA, Wang Q, Chen GJ, Wang GY, Zhang ZN (2001) Isotopic geochemistry of the groundwater systems in arid and semiarid areas and its significance: a case study in Shiyang River basin, Gansu province, northwest China. Environ Geol 40:557–565

    Article  Google Scholar 

  • Simmers I (2003) Hydrological processes and water resources management. In: Simmers I (ed) Understanding water in a dry environment: hydrological processes in arid and semi-arid zones. Balkema, Lisse, The Netherlands

    Chapter  Google Scholar 

  • Souvignet M, Gaesse H, Ribbe L, Kretschmer N, Oyarzún R (2010) Statistical downscaling of precipitation and temperature in north-central Chile: an assessment of possible climate change impacts in an arid Andean watershed. Hydrol Sci J 55:41–57

    Article  Google Scholar 

  • Stellato L, Petrella E, Terrasi F, Belloni P, Belli M, Sansone U, Celico F (2008) Some limitations in using 222Rn to assess river–groundwater interactions: the case of Castel di Sangro alluvial plain (central Italy). Hydrogeol J 16:701–712

    Article  Google Scholar 

  • Strauch G, Oyarzún R, ReinstorfF OJ, Schirmer M, Knöller K (2009) Interaction of water components in the semi-arid Huasco and Limarí River basins, north central Chile. Adv Geosci 22:51–57

    Article  Google Scholar 

  • Tallini M, Parisse B, Petitta M, Spizzico M (2013) Long-term spatio-temporal hydrochemical and 222Rn tracing to investigate groundwater flow and water–rock interaction in the Gran Sasso (central Italy) carbonate aquifer. Hydrogeol J 21:1447–1467

    Article  Google Scholar 

  • Thomas H (1967) Geología de la Hoja Ovalle, Provincia de Coquimbo [Ovalle sheet geology]. Bull no. 23, Instituto de Investigaciones Geológicas, Santiago, Chile, map 1:250.000

  • Thyne G, Güler C, Poeter E (2004) Sequential analysis of hydrochemical data for watershed characterization. Ground Water 42:711–723

    Article  Google Scholar 

  • Vicuña S, McPhee J, Garreaud RD (2012) Agricultural vulnerability to climate change in a snowmelt-driven basin in semiarid Chile. J Water Resour Plan Manag 138:431–441

    Article  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Groundwater and surface water: a single resource. US Geol Surv Circ 1139

  • Yin L, Hou G, Su X, Wang D, Dong J, Hao Y, Wang X (2011) Isotopes (δD and δ18O) in precipitation, groundwater and surface water in the Ordos Plateau, China: implications with respect to groundwater recharge and circulation. Hydrogeol J 19:429–443

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the project Fondecyt 11100040 (CONICYT), and was carried out as part of the Programa de Recursos Hídricos y Medio Ambiente (PRHIMA) of the Departamento Ingeniería de Minas, Universidad de La Serena. The authors are much indebted to the Dirección General de Aguas (DGA, Ministerio de Obras Públicas) for allowing the use of their data files. The report benefited from the comments of two reviewers, Drs. A. Brookfield and J. Gomez-Velez, the associate editor, Dr. T. Gleeson, and the editor, Prof. M. Schafmeister.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Oyarzún.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyarzún, R., Barrera, F., Salazar, P. et al. Multi-method assessment of connectivity between surface water and shallow groundwater: the case of Limarí River basin, north-central Chile. Hydrogeol J 22, 1857–1873 (2014). https://doi.org/10.1007/s10040-014-1170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1170-9

Keywords

Navigation