Skip to main content

Advertisement

Log in

Use of groundwater temperature data in geothermal exploration: the example of Sydney Basin, Australia

Utilisation de la température des eaux souterraines pour l’exploration géothermique: l’exemple du bassin de Sydney, Australie

Uso de los datos de temperaturas de agua subterránea en la exploración geotermal: el ejemplo de la Sydney Basin, Australia

Uso de dados de temperatura de água subterrânea na exploração geotérmica: o exemplo da Bacia de Sidney, Austrália

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Multidimensional simulations in geothermal exploration require vast quantities of measurements, including temperature, to produce realistic estimates. In Australia, the database of temperature measurements is small, limited by sparse distribution and tainted by non-equilibrium conditions. Groundwater temperature data from the groundwater-monitoring/water-supply bore network provide a creative cost effective way to bridge the information gap. Down-hole temperature profiles are valuable when thermal equilibrium conditions are present. Equilibrium conditions are common in groundwater bores as they are installed to be long term. Effective use of groundwater temperature data for geothermal exploration requires an understanding of (1) the thermal conditions being measured, (2) the factors that affect the measurement, and (3) how the measurements can be used. Highly constrained models, rather than extrapolation maps, are the cost effective, risk-reducing solution for geothermal exploration in Australia. The Sydney Basin provides a case study of how an undervalued, ‘cold’ coal-bearing sedimentary basin became ‘hot’ through high-resolution modelling using groundwater temperature measurements. Groundwater temperature data are the new information source capable of filling the gaps left by the limited deep temperature measurements. Hydrogeological data play a critical role in geothermal exploration, as models representing a highly complex world approach reality.

Résumé

Les simulations multidimensionnelles dans l’exploration géothermique requièrent de grandes quantités de mesures dont la température pour fournir des estimations réalistes. En Australie, la base de données des mesures de température est peu importante à cause de la distribution éparse et de plus marquée par les conditions de non équilibre. Les données de température des eaux souterraines provenant du réseau de points de suivi des eaux souterraines et des forages d’alimentation en eau permettent de façon rentable de combler le manque d’information. Des profils de température en forage sont précieux lorsque les conditions d’équilibre sont présentes. Les conditions d’équilibre sont courantes dans les forages d’eaux souterraines lorsque elles sont mis en place sur le long terme. L’utilisation efficace des données de température des eaux souterraines pour l’exploration géothermique nécessite une compréhension de (1) des conditions thermales mesurées, (2) des facteurs qui affectent la mesure et (3) comment les mesures peuvent être utilisées. Des modèles fortement contraints, plutôt que des cartes d’extrapolation, sont des solutions rentables permettant de réduire les risques pour l’exploration géothermique en Australie. Le bassin de Sydney constitue un cas d’étude illustrant comment un bassin sédimentaire avec des strates carbonifères désigné comme « froid » devient un bassin « chaud » à partir de la modélisation à haute résolution des mesures de températures des eaux souterraines. Les données de température des eaux souterraines sont les nouvelles sources de données capables de combler les lacunes dues au nombre limité de mesures de température en profondeur. Les données hydrogéologiques jouent un rôle critique dans l’exploration géothermique, les modèles représentant une réalité hautement complexe.

Resumen

Las simulaciones multidimensionales en la exploración geotermal requieren vastas cantidades de mediciones, incluyendo temperatura, para producir estimaciones realistas. En Australia, la base de datos de mediciones de temperaturas es pequeña, limitada por una distribución dispersa y afectada por condiciones de no equilibrio. Los datos de temperatura del agua subterránea de la red de pozos de monitoreo de agua subterránea y de abastecimiento de agua proveen una manera creativa poco costosa para salvar la carencia de información. Los perfiles de temperatura en profundidad en los pozos son valiosos cuando las condiciones de equilibrio termal están presentes. Las condiciones de equilibrio son comunes en los pozos de agua subterránea cuando son instalados para ser utilizados a largo plazo. El uso efectivo de los datos de temperatura de agua subterránea para la exploración geotermal requiere una comprensión de (1) las condiciones termales a ser medidas, (2) los factores que afectan las mediciones, y (3) como pueden ser usadas las mediciones. Los modelos altamente restrictivos, más que la de los mapas de extrapolación de, son una solución de costo razonable y de riesgo reducido para la exploración geotermal en Australia. La Sydney Basin provee un caso de estudio de como una subvaluada cuenca sedimentaria carbonífera “fría” se convierte en “caliente” a través de un modelado de alta resolución usando mediciones de la temperatura del agua subterránea. Los datos de temperatura del agua subterránea son la nueva fuente de información capaz de completar las carencias dejadas por las limitadas mediciones en profundidad de la temperatura. Los datos hidrogeológicos juegan un papel crítico en la exploración geotermal, como modelos que representan un enfoque de la realidad universal altamente compleja.

Resumo

Simulações multidimensionais na exploração geotérmica requerem grandes quantidades de medições, incluindo a temperatura, para produzir estimativas realistas. Na Austrália, as bases de dados de valores de temperatura são escassas, limitadas por uma distribuição esparsa e inquinadas por condições de não equilíbrio. Os dados de temperatura da água subterrânea obtidos a partir das redes de captação de água de abastecimento ou de redes de monitorização de águas subterrâneas proporcionam um modo criativo de custo reduzido para colmatar esta lacuna de informação. Perfis de temperatura dentro de furos são também valiosos quando estão presentes condições de equilíbrio térmico. Como os furos de água subterrânea são instalados a longo prazo, são comuns condições de equilíbrio dentro dos mesmos. O uso efetivo da temperatura da água subterrânea para exploração geotérmica requere o entendimento (1) das condições térmicas em que são medidas, (2) dos fatores que afetam as medições, e (3) de como as medições podem ser usadas. Modelos altamente restritos, mais do que mapas extrapolados, são as soluções mais económicas e que apresentam menos riscos para a exploração geotérmica na Austrália. A Bacia de Sidney proporciona um estudo de caso sobre o modo como uma bacia sedimentar carbonífera “fria” subavaliada se tornou “quente”, através de modelação de alta resolução usando medições de temperatura de água subterrânea. Os dados de temperatura de água subterrânea são a nova fonte de informação capaz de preencher as lacunas deixadas pelas medições limitadas de dados de temperatura em profundidade. Os dados hidrogeológicos desempenham um papel fundamental na exploração geotérmica, uma vez que os modelos representam uma abordagem altamente complexa à realidade global.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adler JD, Hawley S, Maung J, Scott RD, Sinelnikov A, Kouzmina G (1998) Prospectivity of the offshore Sydney Basin: a new perspective. APPEA J 38:68–92

    Google Scholar 

  • AusScope AGOS (2013) AusScope AGOS Program. Available via http://auscope.org.au/site/agos.php. Accessed 9 April 2013

  • Beardsmore GR, Cull JP (2001) Crustal heat flow: a guide to measurement and modelling. Cambridge University Press, Cambridge, UK

  • Beck AE (1977) Climatically perturbed temperature gradients and their effect on regional and continental heat flow means. Tectonophysics 41:17–39

    Article  Google Scholar 

  • Bembrick CS, Lonergan AD (1976) Sydney Basin. In: Economic geology of Australia and Papua New Guniea 3. Petroleum. Australasian Inst. Mining and Metallurgy, Monograph 7, AUSIMM, South Carlton, Australia

  • Blackwell DD, Steele JL, Brott CA et al (1980) The terrain effect on terrestrial heat flow. J Geophys Res 85:4757–4772

    Article  Google Scholar 

  • Bullard EC (1947) The time taken for a borehole hole to attain temperature equilibrium. Monthly Notices R Astronom Soc Geophys Suppl 5:127–130

    Article  Google Scholar 

  • Burns KL, Weber C, Perry J, Harrington HJ et al. (2000) State of the geothermal industry in Australia. Proc. World Geothermal Congress, Kyushu-Tahoku Japan, May 20–June 10 2000

  • Bjorlykke K, Mo A, Palm E et al (1988) Modelling of thermal convection in sedimentary basins and its relevance to diagentic reactions. Mar Petrol Geol 5:338–351

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Claredon, Oxford, UK

    Google Scholar 

  • Chapman DS, Howell J, Sass JH et al (1984) A note on drill hole depths required for reliable heat flow determinations. Tectonophysics 103:11–18

    Article  Google Scholar 

  • Clauser C (1984) A climatic correction on temperature gradients using surface temperature series of various periods. Tectonophysics 103:33–46

    Article  Google Scholar 

  • Clauser C (2003) Numerical simulation of reactive flow in hot aquifers: SHEMAT and processing SHEMAT. Springer, Berlin, 332 pp

    Book  Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations—a handbook of physical constants, AGU reference shelf Vol 3. American Geophysical Union, Washington, pp 105–126

  • Clauser C, Giese P, Huenges E, Kohl T, Lehmann H, Rybach L, Sfanda J, Wilhelm H, Windlog K, Zoth G et al (1997) The thermal regime of the crystalline continental crust: implications from the KTB. J Geophys Res 102:18417–18441

    Article  Google Scholar 

  • Chopra P, Holgate F (2005) A GIS analysis of temperature in the Australian crust. Proc. World Geothermal Congress, Antalya, Turkey, 24–29 April 2005

  • Cull JP (1979) Climatic corrections to Australian heat-flow data. BMR J Aust Geol Geophys 4:303–307

    Google Scholar 

  • Danis C (2012) The thermal structure of the Sydney Gunnedah Bowen Basin Eastern Australia. PhD Thesis, Macquarie University, Australia

  • Danis C, O’Neill C (2010) A static method for collecting temperatures in deep groundwater bores for geothermal exploration and other applications. Proceedings of Groundwater 2010 the challenge of sustainable management, 31 October to 4 November 2010, Canberra

  • Danis C, O’Neill C, Lackie M et al (2010) Gunnedah Basin 3D architecture and upper crustal temperatures. Aust J Earth Sci 57:483–505

    Article  Google Scholar 

  • Danis C, O’Neill C, Lackie M, Twigg L, Danis A et al (2011a) Deep 3D structure of the Sydney Basin using gravity modelling. Aust J Earth Sci 58:517–542

    Article  Google Scholar 

  • Danis C, O’Neill C, Lee J et al (2011b) Geothermal state of the Sydney Basin: assessment of constraints and techniques. Aust J Earth Sci. doi:10.1080/08120099.2011.606504

    Google Scholar 

  • Danis C, O’Neill C, Quenette S et al (2012) Is it hot enough down there? Assessing geothermal potential in the Sydney-Gunnedah-Bowen Basin. In: Huddlestone-Holmes C, Gerner E (ed) Proc. 2012 Australian Geothermal Energy Conference, Sydney 14–15 November 2012, Record 2012/73

  • Dickson MH, Fanelli M (2004) What is geothermal energy? International Geothermal Assocation. Available via http://www.geothermal-energy.org/314,what_is_geothermal_energy.html. Accessed 14 December 2012

  • Deming D (1989) Application of bottom-hole temperature corrections in geothermal studies. Geothermics 18:775–786

    Article  Google Scholar 

  • Duchane D, Brown D (2002) Hot dry rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico. GHC Bull December:13–19

  • Ecoengineers Pty Ltd (2013) Monthly assessment for March 2003: Geochemistries of Dendrobium Mine Areas 1, 2 and 3 for Dams Safety Committee. BHP Billiton Illawarra Coal, Melbourne, Australia

  • Ferguson G, Beltrami H, Woodbury A et al (2006) Perturbations of ground surface temperature reconstructions by groundwater flow. Geophys Res Lett 33:L13708

    Article  Google Scholar 

  • Gerard A, Menjoz A, Schwoerer P et al (1984) L’anomalie thermique de Soultz-sous-Forêts [The thermal anomaly in Soultz-sous-Forêts]. Geotherm Actual 3:35–42

    Google Scholar 

  • Gerard A, Genter A, Kohl T, Lutz P, Rose R, Rummel F et al (2006) The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forets (Alsace, France). Geothermics 35:473–483

    Article  Google Scholar 

  • Gerner EJ, Holgate FL (2010) OzTemp Interpreted temperature at 5 km depth image. Available via Geoscience Australia. http://www.ga.gov.au/energy/geothermal-energy-resources.html,. Accessed 4 May 2011

  • Glen RA (2005) The Tasmanides of eastern Australia In: Vaughan APM, Leat PT, Pankhurst RJ (ed) Terrane processes at the margin of Gondwana. Geological Soc London Spec Publ 246:23–96

  • Goldstein BA, Hill AJ, Budd AR, Holgate F, Malavazos M et al. (2008) Hot rocks in Australia: National Outlook. Proc. 33rd Workshop on Geothermal Reservoir Eng, Stanford University, Stanford, CA, 28–30 January 2008

  • Gosnold WD, Majorowicz J, Safanda J, Szewczyk J et al (2005) Has northern hemisphere heat flow been underestimated? Proc. AGU Spring Meeting, May 2005, New Orleans, LA, Abstract T42D-01

  • Hawkes G, Ross JB, Gleeson L (2009) Hydrogeological resource investigations: to supplement Sydney’s Water Supply at Leonay, Western Sydney NSW, Australia. In: Miln-Home WA (ed) Groundwater in the Sydney Basin. Proc. IAH NSW Branch Symposium, Sydney, 4–5 August 2009, pp 89–105

  • Hatley RK (2004) Hydrogeology of the Botany Basin. In: Scholey G, Young G (ed) Engineering geology of the Sydney region: revisited. Proc. Aust. Geomechanics Society Mini-Symposium, Sydney, 13 October 2004. J Aust Geomech Soc 39:73–92

  • Herbert C, Helby R (1980) A guide to the Sydney Basin. Bull Geol Surv NSW 26:11–52

    Google Scholar 

  • Hermanrud C, Lerche I, Meisingest KK et al (1991) Determination of virgin rock temperatures from drillstem test, SPE-19464. J Petrol Technol 43:1126–1131

    Article  Google Scholar 

  • Jaworska J (2008) Sydney Basin geothermal data package (on DVD), 1st edn. New South Wales Department of Primary Industries, Maitland, Australia

    Google Scholar 

  • Jessop AM (1990) Thermal geophysics. Developments in Solid Earth Geophysics no. 17, Elsevier, Amsterdam, 306 pp

    Google Scholar 

  • Kirby AL, Meixner AJ, Lescinsky DT, Budd AR (2012) Numerical simulation as a tool for understanding geothermal resources. In: Huddlestone-Holmes C, Gerner E (ed) Proc. 2012 Australian Geothermal Energy Conference, Sydney, 14–15 November, Record 2012/73

  • Kutasov IM, EpplebaumnL V (2007) Well temperature testing—an extension of Slider’s method. J Geophys Eng 4:1–6

    Article  Google Scholar 

  • Lee R.J (2000) Hydrogeology of the Hawkesbury Sandstone in the Southern Highlands of NSW in relation to Mesozoic Horst-Graben Tectonics and Stratigraphy. In: Boyd R, Diessel CFK, Francis S (eds) Proceedings of the 34th Newcastle Symposium on Advances in the Study of the Sydney Basin. The University of Newcastle, Newcastle, Australia

  • Meixner AJ, Kirkby AL, Lescinsky DT, Horspool N et al (2012) The Cooper Basin 3D map version 2: thermal modelling and temperature uncertainty. Geoscience Australia Record 2012/60, Canberra, Australia

  • McKibbin D, Smith PC (2000) Sandstone hydrogeology of the Sydney Region. In: McNally G.H, Franklin B.J (ed) Sandstone City: Sydney’s dimension stone and other sandstone geomaterials. Proceedings 15th Aust. Geological Convention Symposium, Sydney, July 2000. Enviromental, Engineering and Hydrogeology Specialist Group of the Geolog. Soc. Aust. Monograph 5, GSA, Sydney, pp 83–97

  • Narasimhan TN, Witherspoon PA (1979) Geothermal well testing. J Hydrol 43:537–553

    Article  Google Scholar 

  • McNally G (2004) Shale, salinity and groundwater in western Sydney. In: Scholey G, Young G (ed) Engineering geology of the Sydney region: revisited. Proc. Aust. Geomechanics Soc. Mini-Symposium Sydney, 13 October 2004. J Aust Geomech Soc 39:109–124

  • Minsley BJ, Irving J, Abraham JD, Smith BD (2012) Stochastic methods for model assessment of airborne frequency-domain electromagnetic data. Proceedings of the 22nd International Geophysical Conference and Exhibition, 26–29 February 2012, Brisbane Australia

  • Pollack HN, Shen PY, Huang S et al (1996) Inference of ground-surface temperature history from subsurface temperature data: interpreting ensembles of borehole logs. Pure Appl Geophys 147:537–550

    Article  Google Scholar 

  • Quenette S, Moresi L (2010) Models based experimentation: numerical modelling of 3D basin scale architecture heat & fluid flow. AGU Fall Meeting Abstracts

  • Raffensperger JP, Vlassopoulos D (1999) The potential for free and mixed convection in sedimentary basins. Hydrogeol J 7:505–520

    Article  Google Scholar 

  • Reiter M, Mansure AJ (1983) Geothermal studies in the San Juan Basin and the four corners area of the Colorado Platueau, I: terrestrial heat flow measurements. Technophys 91:233–251

    Article  Google Scholar 

  • Rowland JV, Sibson RH (2004) Structural controls on hydrothermal flow in a segmented rift system, Taup volcanic zone, New Zealand. Geofluids 4:259–283

    Article  Google Scholar 

  • Sheldon HA, Florio B, Trefry MG, Reid LB, Ricard LP, Ameed K, Ghori R (2012) The potential for convection and implications for geothermal energy in the Perth Basin. Western Australia. Hydrogeol J 20:125–1268

    Article  Google Scholar 

  • Slagstad T, Midttomme K, Ramstad RK, Slagstad D (2008) Factors influencing shallow (<1000 m depth) temperatures and their significance for extraction of ground-source heat. In: Slagtad (ed) Geology for society. Geol Surv Norway Spec Publ 11:99–109

  • Somerville M, Wyborn D, Chopra P, Rahman S, Estrella D, Van Der Meulen T et al (1994) Hot dry rock feasibility study. Energy Research and Development Corporation (ERDC) Report, 94/243, ERDC, Canberra, ACT, Australia

    Google Scholar 

  • Tammetta P (2009) North monitoring network quarterly and annual sampling report September 2009. Coffey Geotechnics Report no. GEOTLCOV23873AB-AA, Ulan Coal Mines Ltd, Mudgee

  • Tammetta P (2010) North monitoring network quarterly and annual sampling report September 2010. Coffey Geotechnics Report no. GEOTLCOV23873AB-AE, Ulan Coal Mines Ltd, Mudgee

  • Tammetta P, Hewitt P (2004) Hydrogeological properties of Hawkesbury Sandstone in the Sydney region. J Aust Geomech Soc 39:93–108

    Google Scholar 

  • Tarantola A, Valette B (1982) Inverse problems = quest for Information. Geophysics 50:159–170

    Google Scholar 

  • Turcotte DL, Schubert G (2003) Geodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Uncover Initiative (2012) Available via: http://www.science.org.au/policy/documents/uncover-report.pdf. Accessed 9 April 2013

  • Vasseur G, Lucazeau F (1983) Bounds on paleotemperatures and paleoclimatic corrections. Zbl Geol Paläontol 1:17–24

    Google Scholar 

  • Wang K, Lewis TJ, Belton DS, Shen PY et al (1994) Differences in recent ground surface warming in eastern and western Canada: evidence from borehole temperatures. Geophys Res Lett 21:2689–2692

    Article  Google Scholar 

  • WaterInfo (2013) http://www.waterinfo.nsw.gov.au/gw/. Accessed 10 Nov 2013

Download references

Acknowledgements

The author would like to thank Ulan Coal Mines Ltd for access to their groundwater-monitoring network and data, Greg Russell from the NSW Office of Water for access to monitoring bores and groundwater data, and BHP Billiton for access to tritium age data. Critical reviews by J. Busby, R. Podgorney, and G. Ferguson (guest editor of Hydrogeology Journal) improved an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cara Danis.

Additional information

Published in the theme issue “Hydrogeology of Shallow Thermal Systems”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danis, C. Use of groundwater temperature data in geothermal exploration: the example of Sydney Basin, Australia. Hydrogeol J 22, 87–106 (2014). https://doi.org/10.1007/s10040-013-1070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-1070-4

Keywords

Navigation