Skip to main content
Log in

Effect of tidal fluctuations on transient dispersion of simulated contaminant concentrations in coastal aquifers

Effet des fluctuations inter-tidales sur la dispersion transitoire des concentrations simulées d’un contaminant dans les aquifères côtiers

Efectos de las fluctuaciones de la marea en la dispersión transitoria de concentraciones simuladas de contaminantes en acuíferos costeros

Effetti delle Oscillazioni di Marea sulla Variabilità dei Valori di Dispersione nella Simulazione del Trasporto di Contaminanti in Acquiferi Costieri

Efeito das flutuações de maré na dispersão transitória das concentrações simuladas de contaminantes em aquíferos costeiros

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Variable-density groundwater models require extensive computational resources, particularly for simulations representing short-term hydrologic variability such as tidal fluctuations. Saltwater-intrusion models usually neglect tidal fluctuations and this may introduce errors in simulated concentrations. The effects of tides on simulated concentrations in a coastal aquifer were assessed. Three analyses are reported: in the first, simulations with and without tides were compared for three different dispersivity values. Tides do not significantly affect the transfer of a hypothetical contaminant into the ocean; however, the concentration difference between tidal and non-tidal simulations could be as much as 15%. In the second analysis, the dispersivity value for the model without tides was increased in a zone near the ocean boundary. By slightly increasing dispersivity in this zone, the maximum concentration difference between the simulations with and without tides was reduced to as low as 7%. In the last analysis, an apparent dispersivity value was calculated for each model cell using the simulated velocity variations from the model with tides. Use of apparent dispersivity values in models with a constant ocean boundary seems to provide a reasonable approach for approximating tidal effects in simulations where explicit representation of tidal fluctuations is not feasible.

Résumé

Les modèles de nappe à maille variable requièrent des moyens de calcul importants, en particulier pour les simulations représentant une variabilité hydrologique de court terme, telles que les fluctuations de la marée. Les modèles d’intrusion d’eau salée négligent habituellement les fluctuations de la marée et ceci peut introduire des erreurs dans les concentrations simulées. Les effets des marées sur les concentrations simulées dans un aquifère côtier ont été évalués. Trois analyses sont présentées : dans la première, des simulations avec et sans marées ont été comparées pour trois valeurs différentes de la dispersivité. Les marées n’affectent pas significativement le transfert d’un contaminant supposé vers l’océan ; cependant, la différence de concentration entre les simulations avec et sans marées pourrait atteindre 15 %. Dans la seconde analyse, la valeur de la dispersivité pour le modèle sans marées a été augmentée dans une zone limitrophe de l’océan. En accroissant légèrement la dispersivité dans cette zone, la différence de concentration maximale entre les simulations avec et sans marées a été réduite jusqu’à 7 %. Dans la dernière analyse, une valeur de dispersivité apparente a été calculée pour chaque maille du modèle, en utilisant les variations simulées de la vitesse du modèle avec marées. L’utilisation des valeurs de dispersivité apparente dans les modèles à limite océanique fixe semble fournir une approche acceptable pour évaluer les effets de la marée dans les simulations où une représentation formelle de ses fluctuations n’est pas possible.

Resumen

Los modelos de aguas subterráneas de densidad variable requieren amplios recursos computacionales, particularmente para simulaciones que representan variabilidad hidrológica en cortos tiempos tales como las fluctuaciones de las mareas. Los modelos de intrusión de agua salada usualmente desprecian las fluctuaciones de las mareas y estas pueden introducir errores en las concentraciones simuladas. Se evaluaron los efectos de las mareas sobre concentraciones simuladas en acuíferos costeros. Se han reportado tres análisis: en el primero, se compararon las simulaciones con y sin mareas para tres valores de dispersividad diferentes. Las mareas no afectan significativamente la transferencia del contaminante hipotético hacia el océano; sin embargo, la diferencia de concentración entre las simulaciones con y sin mareas podrían ser de hasta 15%. En el segundo análisis, el valor de dispersividad para el modelo sin mareas fue incrementado en una zona cercana al límite del océano. Mediante un leve incremento de la dispersividad en esta zona, la diferencia máxima entre la simulación con y sin mareas se redujo hasta un 7%. En el último análisis, se calculó un valor de aparente dispersividad para cada celda del modelo usando las variaciones simuladas de velocidad a partir de un modelo con mareas. El uso de valores de aparente dispersividad en modelos con un límite océanico constante parece proveer un enfoque razonable para aproximar los efectos de las mareas en las simulaciones donde la representación explícita de los fluctuaciones de la marea no es factible.

Riassunto

I modelli di flusso idrico sotterraneo densità-dipendente richiedono solitamente importanti risorse computazionali, specie per quelle simulazioni che includono variazioni di breve periodo delle condizioni al contorno, come le fluttuazioni di marea. Generalmente i modelli di intrusione salina trascurano le oscillazioni mareali e questo può portare ad errori nelle concentrazioni simulate, sia per l’intrusione salina sia per il trasporto di inquinanti. In questo articolo vengono valutati gli effetti della marea sulle concentrazioni simulate in un acquifero costiero attraverso tre analisi. Nella prima, vengono paragonate simulazioni con e senza marea per tre differenti valori di dispersività: la marea non influenza significativamente, in termini di massa, il flusso di un ipotetico contaminante che arriva al mare ma le differenze tra le distribuzioni di contaminazione simulate con e senza marea arrivano ad essere maggiori del 15%. Nella seconda analisi, il valore di dispersività nelle simulazioni senza marea è stato incrementato in una zona in prossimità della costa: aumentando leggermente il valore della dispersività in questa zona, la massima differenza di concentrazione tra le simulazioni con e senza la marea si riduce fino al 7%. Nell’ultima analisi infine, è stato calcolato un valore di dispersività apparente per ogni cella del modello utilizzando le variazioni di velocità simulate nel modello con la marea. Attraverso l’utilizzo dei valori di dispersività apparente, in un modello con una condizione di carico costante sul mare, si è giunti alla conclusione che sia possibile raggiungere una ragionevole approssimazione degli effetti di marea, in simulazioni in cui la rappresentazione esplicita delle oscillazioni di carico non è fattibile con tempi di calcolo accettabili.

Resumo

Modelos de águas subterrâneas com densidade variável exigem vastos recursos computacionais, principalmente para as simulações que representam variabilidade hidrológica de curto prazo, como flutuações de maré. Modelos de intrusão salina negligenciam normalmente as flutuações das marés, e isso podem introduzir erros nas concentrações simuladas. Os efeitos de maré sobre as concentrações simuladas num aquífero costeiro foram avaliados. São relatadas três análises: na primeira, as simulações com e sem marés foram comparadas para três valores diferentes de dispersividade. As marés não afectam significativamente a transferência de um contaminante hipotético para o oceano; no entanto, a diferença de concentração entre as simulações, considerando ou não considerando, as marés, pode atingir 15%. Numa segunda análise, o valor da dispersividade para o modelo sem marés foi aumentado, numa zona perto da fronteira com o oceano. Aumentando ligeiramente a dispersividade nesta zona, a diferença de concentração máxima entre as simulações, com e sem marés, foi reduzida para o valor mínimo de 7%. Na última análise, um valor de dispersividade aparente foi calculado para cada célula do modelo, usando as variações de velocidade simulada do modelo com as marés. A utilização de valores de dispersividade aparente nos modelos com uma fronteira constante em relação ao oceano parecem fornecer uma abordagem razoável para aproximar os efeitos das marés nas simulações em que a representação explícita das flutuações de maré não é viável.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackerer P, Kinzelbach W (1986) Modelisation du transport de contaminant par la méthode de marche au hasard: influence des variations du champ d’écoulement au cours du temps sur la dispersion [Modeling of contaminant transport by the method of random walk: effect of changes in the flow field over time on the dispersion], 1st edn. Proceedings of Stochastic Approach to Subsurface Flow Symposium, International Association of Hydraulic Research, Montvillargenne, France, 4–6 June 1985, pp 517–529

  • Alberti L, Francani V, La Licata I, (2006) Hydrogeologic parameters and human activities influence on sea water intrusion at a refinery site. In: International FEFLOW User Conference, Berlin, 10–15 September 2006

  • Ataie-Ashtiani B, Volker RE, Lockington DA (1997) Tidal effects on sea water intrusion in unconfined aquifers. J Hydrol 216:17–31

    Article  Google Scholar 

  • Bakker M, Oude Essink GHP, Langevin CD (2004) The rotating movement of three immiscible fluids: a benchmark problem. J Hydrol 278:270–278

    Article  Google Scholar 

  • Dausman AM, Langevin CD (2005) Movement of the saltwater interface in the superficial aquifer system in response to hydrologic stresses and water-management practices, Broward County, Florida. US Geol Surv Sci Invest Rep 2004-5256

  • Goode DJ, Konikow LF (1990) Apparent dispersion in transient groundwater flow. Water Resour Res 26(10):2339–2351

    Article  Google Scholar 

  • Guo W, Langevin CD (2002) User guide to SEAWAT: a computer program for simulation of three-dimensional variable-density groundwater flow. US Geol Surv Open File Rep 01–434

  • Knoch M, Zhang G (1992) Numerical simulation of the effects of variable density in a contaminant plume. Ground Water 30(5):731–742

    Article  Google Scholar 

  • La Licata I, Langevin CD, Dausman AM (2007) Effect of tidal fluctuations on contaminant transfer to the ocean. In: Sanford W, Langevin CD, Polemio M, Povinec P (eds) A new focus on groundwater–seawater interactions. IAHS Publication 312, IAHS, Oxfordshire, UK

    Google Scholar 

  • La Licata I, Langevin CD, Dausman AM, Alberti L (2008) Tidal effects on transient dispersion of simulated contaminant concentrations in coastal aquifers. In: Proceedings of the 20th Salt Water Intrusion Meeting, Naples, FL, 23–27 June 2008

    Google Scholar 

  • Langevin C.D (2001) Simulation of ground-water discharge to Biscayne Bay, southeastern Florida. US Geol Surv Water Resour Invest Rep 00–4251

  • Langevin CD (2003) Simulation of submarine ground water discharge to a marine estuary: Biscayne Bay, Florida. Ground Water 41(6):758–771

    Article  Google Scholar 

  • Langevin CD, Guo W (2006) MODFLOW/MT3DMS-based simulation of variable density ground water flow and transport. Ground Water 44(3):339–351

    Article  Google Scholar 

  • Langevin C.D, Shoemaker W.B, Guo W (2003) MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model: Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT). US Geol Surv Open File Rep 2003–426

  • Langevin CD, Oude Essink GHP, Panday S, Bakker M, Prommer H, Swain ED, Jones W, Beach M, Barcelo M (2004) MODFLOW-based tools for simulation of variable-density groundwater flow. In: Cheng HD, Ouazar D (eds) Coastal aquifer management: monitoring, modeling, and case studies. Lewis, Boca Raton, FL

  • Langevin CD, Swain ED, Wolfert MA (2005) Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary. J Hydrol 314:212–234

    Article  Google Scholar 

  • Li L, Barry DA, Stagnitti F, Parlange J-Y (1999) Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour Res 35(11):3253–3259

    Article  Google Scholar 

  • Masterson JP (2004) Simulated interaction between freshwater and saltwater and effects of ground-water pumping and sea-level change, lower Cape Cod aquifer system, Massachusetts. US Geol Surv Tech Water Resour Invest Rep 2004–5014

  • McDonald MG, Harbaugh AW (1996) Programmer’s documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference groundwater flow model. US Geol Surv Open-File Rep 96–486

  • Oostrom M, Hayworth JS, Dane JH, Guven O (1992a) Behaviour of dense aqueous phase leachate plumes in homogeneous porous media. Water Resour Res 28(8):2123–2134

    Article  Google Scholar 

  • Oostrom M, Dane JH, Guven O, Hayworth JS (1992b) Experimental investigation of dense solute plumes in an unconfined aquifer model. Water Resour Res 28(9):2315–2326

    Article  Google Scholar 

  • Rao SVN, Sreenivasulu V, Bhallamudi SM, Thandaveswara BS, Sudheer KP (2004) Planning groundwater development in coastal aquifers. Hydrogeol Sci J 49(1):155–170

    Google Scholar 

  • Robinson C, Li L, Barry DA (2006) Effect of tidal forcing on a subterranean estuary. Adv Water Resour. doi:10.1016/j.advwatres.2006.07.006

  • Schincariol RA, Schwartz FW (1990) An experimental investigation of variable density flow and mixing in homogeneous and heterogeneous media. Water Resour Res 26(10):2317–2329

    Article  Google Scholar 

  • Schneider JC, Kruse SE (2003) Assessing selected natural and anthropogenic impacts on freshwater lens morphology on small barrier Islands: Dog Island and St. George Island, Florida, USA. Hydrogeol J 14(1–2):131–145

    Google Scholar 

  • Shoemaker BW, Edwards MK (2003) Potential for saltwater intrusion into the lower Tamiami aquifer near Bonita Springs, southwestern Florida. US Geol Surv Water Resour Invest Rep 2003–4262

  • Shoemaker BW (2004) Important observations and parameters for a salt water intrusion model. Ground Water 42(6):829–840

    Article  Google Scholar 

  • Volker RE, Ataie-Ashtiani B, Lockington DA (1998) Unconfined coastal aquifer response to sea boundary condition. In: Weaver L (ed) Proceedings of International Groundwater Conference, Melbourne, Australia, 8–13 February 1998

  • Zhang Q, Volker RE, Lockington DA (2001) Influence of seaward boundary condition on contaminant transport in unconfined coastal aquifer. J Contam Hydrol 49(2001):201–215

    Article  Google Scholar 

  • Zheng C (1990) MT3D: a modular three-dimensional transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Report to the US EPA, US EPA, Washington, DC

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Politecnico di Milano (DIIAR.), Italy, for supporting collaboration with the US Geological Survey. The authors also thank colleagues at the US Geological Survey for thoughtful reviews of an earlier manuscript. Support for Christian Langevin was provided by US Geological Survey through the Groundwater Resources Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana La Licata.

Appendix: Longitudinal and transverse apparent dispersivity calculation

Appendix: Longitudinal and transverse apparent dispersivity calculation

Mass transport of non-reactive chemicals in transient flow fields has been studied previously. Ackerer and Kinzelbach (1986) define the apparent longitudinal and transverse dispersivity (α La and α Ta respectively) resulting from fluctuations in groundwater flow direction as:

$$ \begin{array}{*{20}{c}} {{\alpha_{{La}}} = {\alpha_L}\,\frac{{\overline {V_L^2} }}{{V\,\overline {{V_L}} }} + {\alpha_T}\,\frac{{\overline {V_T^2} }}{{V\,\overline {{V_L}} }}} \hfill \\ {{\alpha_{{Ta}}} = {\alpha_T}\,\frac{{\overline {V_L^2} }}{{V\,\overline {{V_L}} }} + {\alpha_L}\,\frac{{\overline {V_T^2} }}{{V\,\overline {{V_L}} }}} \hfill \\ \end{array} $$
(1)

where α L and α T are the true longitudinal and transverse dispersivities [L] respectively, V is the groundwater velocity [LT–1], and V L and V T [LT–1] are its components in the mean flow and transverse directions, respectively, with overbars indicating time averages. In this study, velocities of one tidal cycle simulation along the x and z directions were taken from each cell of the domain in the tide model.

The following calculations were applied to each cell to calculate apparent longitudinal and transverse dispersivity values that characterize the velocity variation in that cell during one tidal cycle (n stress periods). Subscript i in the calculations refers to stress periods (1, … n).

From the extracted \( V{x_i} \) and \( V{z_i} \) [LT–1] velocities, the mean flow velocity V [LT–1] was calculated for the whole tidal cycle:

$$ V = \frac{{\left( {\sum\limits_{{i = 1}}^8 {{V_i}} } \right)}}{n} $$
(2)

where

$$ {V_i} = \sqrt {{Vx_i^2 + Vz_i^2}} $$
(3)

is the velocity [LT–1] for the ith stress period.

Then for each stress period, the flow direction \( {\vartheta_i} \) [°] (i.e. the angle relative to the horizontal) was determined:

$$ \begin{array}{*{20}{c}} {{\vartheta_i} = \arctan \left( {\frac{{V{z_i}}}{{V{x_i}}}} \right)\quad when\;V{x_i} \geqslant 0} \hfill \\ {{\vartheta_i} = \arctan \left( {\frac{{V{z_i}}}{{V{x_i}}}} \right) + 180^\circ \quad when\;V{x_i} < 0} \hfill \\ \end{array} $$
(4)

and the mean flow direction \( \vartheta \) [°] was calculated as:

$$ \vartheta = \frac{{\left( {\sum\limits_{{j = 1}}^8 {{\vartheta_i}} } \right)}}{n} $$
(5)

The component of velocity in the mean flow direction (V Li) and the component of velocity transverse to the mean flow direction (V Ti) were calculated for each stress period:

$$ \begin{array}{*{20}{c}} {{V_{{Li}}} = {V_i} \cdot \cos \left( {\Delta \vartheta } \right)} \hfill \\ {{V_{{Ti}}} = {V_i} \cdot \sin \left( {\Delta \vartheta } \right)} \hfill \\ \end{array} $$
(6)

where

$$ \Delta \vartheta = {\vartheta_i} - \vartheta $$
(7)

and represents the deviation of the ith velocity from the mean flow direction [°].

Apparent longitudinal and transverse dispersivity values, α La and α Ta [L], were finally calculated from Eq. 1, where:

$$ \overline {{V_L}} = \frac{{\left( {\sum\limits_{{i = 1}}^8 {{V_{{Li}}}} } \right)}}{n} $$
(8)

and

$$ \begin{array}{*{20}{c}} {\overline {V_L^2} = \frac{{\left( {\sum\limits_{{i = 1}}^8 {V_{{Li}}^2} } \right)}}{n}} \hfill \\ {\overline {V_T^2} = \frac{{\left( {\sum\limits_{{i = 1}}^8 {V_{{Ti}}^2} } \right)}}{n}} \hfill \\ \end{array} $$
(9)

Rights and permissions

Reprints and permissions

About this article

Cite this article

La Licata, I., Langevin, C.D., Dausman, A.M. et al. Effect of tidal fluctuations on transient dispersion of simulated contaminant concentrations in coastal aquifers. Hydrogeol J 19, 1313–1322 (2011). https://doi.org/10.1007/s10040-011-0763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0763-9

Keywords

Navigation