Skip to main content

Advertisement

Log in

Major-ion chemistry, δ13C and 87Sr/86Sr as indicators of hydrochemical evolution and sources of salinity in groundwater in the Yuncheng Basin, China

Chimie des ions majeurs, du δ13C et du 87Sr/86Sr en tant qu’indicateurs de d’évolution hydrochimique et de l’origine de la salinité des eaux souterraines du bassin du Yuncheng, Chine

Iones químicos mayoritarios, δ13C y 87Sr/86Sr como indicadores de evolución hidroquímica y de fuentes de salinidad en el agua subterránea en la Cuenca Yuncheng, China

用主要离子组分、δ13C和 87Sr/86Sr示踪中国运城盆地地下水化学演化及盐分来源

Química de iões maiores, δ13C e 87Sr/86Sr como indicadores da evolução hidroquímica e da origem da salinidade na água subterrânea da Bacia de Yuncheng, China

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Processes controlling hydrogeochemistry in the Yuncheng Basin, China, were characterised using major-ion chemistry, 87Sr/86Sr ratios and δ13C values. Evapotranspiration during recharge increased solute concentrations by factors of ∼5–50 in deep palaeowaters, while higher degrees of evapotranspiration have occurred in shallow, modern groundwater. Aquifer sediments (loess) contain approximately 15 weight% calcite; trends in groundwater HCO3 concentrations and δ13C values (ranging from −16.4 to −8.2‰) indicate that carbonate weathering is a significant source of DIC. Groundwater 87Sr/86Sr ratios (0.7110–0.7162, median of 0.7116) are similar to those in both loess carbonate (0.7109–0.7116) and local rainfall (0.7112), and are significantly lower than Sr in aquifer silicates (0.7184–0.7251). Despite evidence for substantial carbonate dissolution, groundwater is generally Ca-poor (< 10% of total cations) and Na-rich, due to cation exchange. Saturation with respect to carbonate minerals occurs during or soon after recharge (all calcite and dolomite saturation indices are positive). Subsequent carbonate dissolution in the deep aquifer must occur as a second-stage process, in response to Ca loss (by ion exchange) and/or via incongruent dissolution of dolomite and impure calcite. The latter is consistent with positive correlations between δ13C values and Mg/Ca and Sr/Ca ratios (r 2 = 0.32 and 0.34).

Résumé

Les processus contrôlant l’hydrochimie du bassin du Yuncheng en Chine ont été caractérisés à l’aide de la chimie des ions majeurs, des rapports isotopiques 87Sr/86Sr et des valeurs de δ13C. L’évapotranspiration au cours de la recharge a induit une augmentation des concentrations en soluté d’un facteur de ∼5–50 dans les eaux anciennes profondes, alors que de plus fortes intensités d’évapotranspiration marquent les eaux souterraines récentes en sub-surface. Les sédiments de l’aquifère (loess) contiennent environ 15% de calcite ; les tendances en concentration en HCO3 des eaux souterraines et les valeurs de δ13C (comprises entre −16.4 et −8.2‰) indiquent que l’altération des carbonates est une source majeure de carbone inorganique dissous. Les rapports isotopiques du 87Sr/86Sr (0.7110–0.7162, avec 0.7116 comme valeur médiane) sont similaires à ceux des carbonates des loess (0.7109–0.7116) et à ceux des précipitations locales (0.7112), mais plus faibles que les teneurs de Sr dans les silicates des formations de l’aquifère (0.7184–0.7251). Malgré la preuve de l’existence d’une dissolution substantielle des carbonates, les eaux souterraines sont généralement pauvres en Ca (< 10% des cations totaux) et riches en Na, à cause des échanges cationiques. La saturation en ce qui concerne les minéraux carbonatés apparaît pendant ou juste après la recharge (tous les indices de saturation de la calcite et de la dolomite sont positifs). Une dissolution ultérieure des carbonates de l’aquifère profond doit se produire au cours d’un processus secondaire, en réponse à la perte en Ca (par échange d’ions) et/ou via une dissolution incongruente de la dolomite et de la calcite impure. Cette dernière hypothèse est cohérente avec les corrélations positives entre les valeurs de δ13C et les rapports de Mg/Ca et Sr/Ca (r² = 0.32 et 0.34).

Resumen

Los procesos que controlan la hidrogeoquímica en la Cuenca Yuncheng Basin, China, fueron caracterizados usando los iones químicos mayoritarios, las relaciones 87Sr/86Sr y los valores de δ13C. La evapotranspiración durante la recarga incrementó las concentraciones de soluto por un factor ∼5 hasta 50 en las paleoaguas profundas, mientras que mayores grados de evapotranspiración han ocurrido en aguas subterráneas modernas someras. Los sedimentos acuíferos (loess) contienen aproximadamente el 15 % en peso de calcita, las tendencias en el agua subterránea de las concentraciones de HCO3 y valores de δ13C (que van desde–16.4 a −8.2‰) indican que la meteorización del carbonato es una fuente significativa de DIC. Las relaciones 87Sr/86Sr (0.7110–0.7162, mediana de 0.7116) en el agua subterránea son similares a aquellas del loess carbonático (0.7109–0.7116) y de la precipitación local (0.7112), y son significativamente más bajos que el Sr en los acuíferos silicatados (0.7184–0.7251). A pesar de la evidencia de la significativa disolución de carbonato, el agua subterránea es generalmente pobre en Ca (< 10% del total de cationes) y rica en Na, debido al intercambio catiónico. La saturación con respecto a los minerales de carbonato ocurre durante o muy poco después de la recarga (todos los índices de saturación de la calcita y dolomita son positivos). La disolución de carbonato subsiguiente en el acuífero profundo debe ocurrir como una segunda etapa del proceso, en respuesta a la pérdida de Ca (por intercambio iónico) y/o por vía de la disolución incongruente de la dolomita y de la calcita impura. Esto ultimo es consistente con las correlaciones positivas entre los valores de δ13C y las relaciones Mg/Ca y Sr/Ca (r 2 = 0.32 y 0.34).

摘要

本文利用水化学主要离子组分、87Sr/86Sr 和 δ13C刻画控制中国运城盆地地下水水化学特征的过程。补给过程中的蒸散发作用可导致地下水中溶解物含量升至深部老水的5到50倍,浅层的现代地下水受蒸散发影响程度更大。含水层沉积物(黄土)中所含方解石的重量百分比约为15 %。地下水中HCO3含量变化趋势和δ13C值(从 –16.4 到 –8.2 ‰)显示地下水中溶解无机碳的主要来源于碳酸盐的风化。地下水87Sr/86Sr比值(范围为0.7110到0.7162,中间值为0.7116)与黄土碳酸盐(0.7109 至 0.7116)及当地大气降水(0.7112)相近,但显著低于含水层中硅酸盐硅同位素值(0.7184 到 0.7251)。大量证据表明地下水中发生了碳酸盐的溶解,但阳离子交换作用使得地下水贫钙离子(小于总阳离子的10 %)的同时富集钠离子。碳酸盐矿物在补给过程中或在补给后迅速达到饱和(所有的碳酸钙和白云石饱和指数均大于零)。钙亏损(由离子交换造成)和/或通过白云岩及不纯灰岩的不全等溶解促进了深部含水层中碳酸盐的溶解。δ13C 值、Mg/Ca、 Sr/Ca 比值 (r 2分别为0.32 和 0.34)存在正相关关系与上述理论是相符的。

Resumo

Foram caracterizados os processos que controlam a hidroquímica na Bacia de Yuncheng, China, usando a química dos iões maiores, os rácios 87Sr/86Sr e valores de δ13C. A evapotranspiração durante a recarga incrementou a concentração de solutos por factores de ∼5 a 50 nas águas antigas profundas, enquanto graus mais elevados de evapotranspiração ocorreram nas águas subterrâneas modernas subsuperficiais. Os sedimentos aquíferos (loess) contêm aproximadamente 15% em peso de calcite; as tendências das concentrações de HCO3 nas águas subterrâneas e os valores de δ13C (variando de −16.4 a −8.2‰) indicam que a meteorização do carbonato é uma origem significativa para o CID (carbono inorgânico dissolvido). Os rácios de 87Sr/86Sr na água subterrânea (0.7110–0.7162, mediana de 0.7116) são similares aos do carbonato do loess (0.7109–0.7116) e aos da precipitação local (0.7112), e são significativamente mais baixos que nos silicatos do aquífero (0.7184–0.7251). Apesar da evidências de uma substancial dissolução de carbonatos, a água subterrânea é geralmente pobre em Ca (< 10% do total de catiões) e rica em Na, devido a troca catiónica. A saturação com respeito aos carbonatos ocorre durante ou logo depois da recarga (todos os índices de saturação da calcite e da dolomite são positivos). Terá que ocorrer subsequente dissolução de carbonato no aquífero profundo como uma segunda fase de processo em resposta à perda de Ca (por troca catiónica) e/ou dissolução incongruente de dolomite ou calcite impura. Este último é consistente com as correlações positivas entre os valores de δ13C e os rácios de Mg/Ca e de Sr/Ca (r 2 = 0.32 e 0.34).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • An Z, Kukla GJ, Porter SC, Xiao J (1991) Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quat Res 36:29–36

    Article  Google Scholar 

  • An Z, Porter SC, Kutzbach JE, Wu X, Wang S, Liu X, Li X, Zhou W (2000) Asynchronous Holocene optimum of the East Asian monsoon. Quat Sci Rev 19:743–762

    Article  Google Scholar 

  • Bhattacharya P, Claesson M, Bundschuh J, Sracek O, Fagerberg J, Jacks G, Martin RA, Stoniolo AR, Thir JM (2006) Distribution and mobility of arsenic in the Rio Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Sci Total Environ 358:97–120

    Article  Google Scholar 

  • Blaser PC, Coetsiers M, Aeschbach-Hertig W, Kipfer R, Van Camp M, Loosli HH, Walraevens K (2010) A new groundwater radiocarbon correction approach accounting for palaeoclimate conditions during recharge and hydrochemical evolution: the Ledo-Paniselian Aquifer, Belgium. Appl Geochem 25:437–455

    Article  Google Scholar 

  • Cao XH (2005) Study of the confined groundwater system of middle-deep layers in Sushui Catchment (in Chinese). Shanxi Hydrotech Bull 3(Aug 2005):41–43

    Google Scholar 

  • Cao JJ, Zhu CS, Chow JC, Liu WG, Han YM, Watson JG (2008) Stable carbon and oxygen isotopic composition of carbonate in fugitive dust in the Chinese Loess Plateau. Atmos Environ 42:9118–9122

    Article  Google Scholar 

  • Cartwright I (2010) Using groundwater geochemistry and environmental isotopes to assess the correction of 14C ages in a silicate-dominated aquifer system. J Hydrol 382:174–187

    Article  Google Scholar 

  • Cartwright I, Weaver T, Fulton S, Nichol C, Reid M, Cheng X (2004) Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. Appl Geochem 19:1233–1254

    Article  Google Scholar 

  • Cerling TE, Pederson BL, Von Damm KL (1989) Sodium-calcium ion exchange in the weathering of shales: implications for global weathering budgets. Geology 17:552–554

    Article  Google Scholar 

  • China Geological Survey (2006) Groundwater resources and environmental issues assessment in the six major basins of Shanxi (in Chinese). China Geological Survey Spec Publ., China Geological Survey, Beijing

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York

    Google Scholar 

  • Currell MJ, Cartwright I, Bradley DC, Han DM (2010) Recharge history and controls on groundwater quality in the Yuncheng Basin, north China. J Hydrol 385:216–229

    Article  Google Scholar 

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36:328–350

    Article  Google Scholar 

  • Dickin AP (1995) Radiogenic isotope geology. Cambridge University Press, Cambridge

    Google Scholar 

  • Dogramaci SS, Herczeg AL (2002) Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia. J Hydrol 262:50–67

    Article  Google Scholar 

  • Edmunds WM, Walton NRG (1983) The Lincolnshire Limestone–Hydrogeochemical evolution over a ten-year period. J Hydrol 61:201–211

    Article  Google Scholar 

  • Edmunds WM, Bath AH, Miles DL (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochim Cosmochim Acta 46:2069–81

    Article  Google Scholar 

  • Edmunds WM, Ma J, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl Geochem 21:2148–2170

    Article  Google Scholar 

  • Fujita S, Takahashi A, Weng J, Huang L, Kim H, Li C, Huang FTC, Jeng F (2000) Precipitation chemistry in East Asia. Atmos Environ 34:525–537

    Article  Google Scholar 

  • Gallet S, Jahn B, Torii M (1996) Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chem Geol 133:67–88

    Article  Google Scholar 

  • Gao X, Wang Y, Li Y, Guo Q (2007) Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng Basin, northern China. Environ Geol 53:795–803

    Article  Google Scholar 

  • Gates JB, Edmunds WM, Darling WG, Ma J, Pang Z, Young AA (2008) Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers. Appl Geochem 23:3519–3534

    Article  Google Scholar 

  • Gleik PH (2009) China and water. In: Gleik PH, Cooley H, Cohen MJ, Morikawa M, Morrison J, Palaniappan M (ed) The world’s water 2008–2009: the biennial report on freshwater resources. Island, Washington, DC, pp 79–97

    Google Scholar 

  • Gomez ML, Blarasin MT, Martinez DE (2009) Arsenic and fluoride in a loess aquifer in the central area of Argentina. Environ Geol 57:143–155

    Article  Google Scholar 

  • Guo Q, Wang Y, Gao X, Ma T (2007) A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale: a case study in Taiyuan Basin, northern China. Environ Geol 52:923–932

    Article  Google Scholar 

  • Han DM, Liang X, Currell MJ, Jin MG, Zhong WJ, Liu CM, Song XF (2010) Environmental isotopic and hydrochemical characteristics of groundwater systems in Daying and Qicun geothermal fields, Xinzhou Basin, Shanxi, China. Hydrol Process 22:3157–3176

    Article  Google Scholar 

  • Han JM, Keppens E, Liu TS, Paepe R, Jiang WY (1997) Stable isotope composition of the carbonate concretion in loess and climate change. Quat Int 37:37–43

    Article  Google Scholar 

  • Harrington GA, Herczeg AL (2003) The importance of silicate weathering of a sedimentary aquifer in arid Central Australia indicated by very high 87Sr/86Sr ratios. Chem Geol 199:281–292

    Article  Google Scholar 

  • Herczeg AL, Edmunds WM (2000) Inorganic ions as tracers. In: Cook P, Herczeg A (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 31–77

    Google Scholar 

  • Katz BG, Bullen TD (1996) The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in a mantled karst. Geochim Cosmochim Acta 60:5075–5087

    Article  Google Scholar 

  • Kreuzer AM, Rohden CV, Friedrich R, Chen Z, Shi J, Hajdas I, Aeschbach-Hertig W (2009) A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain. Chem Geol 259:168–180

    Article  Google Scholar 

  • Lasaga AC (1984) Chemical kinetics of water–rock interaction. J Geophys Res 89:4009–4025

    Article  Google Scholar 

  • Li X (2003) Pressure of water shortage on agriculture in arid region of China. Chin Geog Sci 13:124–129

    Article  Google Scholar 

  • Liu TS (1988) Loess in China, 2nd edn. China Ocean Press, Beijing

    Google Scholar 

  • Liu TS, Zhang SX, Han JM (1986) Stratigraphy and palaeoenvironmental changes in the loess of central China. Quat Sci Rev 5:489–495

    Google Scholar 

  • McNab WW Jr, Singleton MJ, Moran JE, Esser BK (2009) Ion exchange and trace element surface complexation reactions associated with applied recharge of low-TDS water in the San Joaquin Valley, California. Appl Geochem 24:129–137

    Article  Google Scholar 

  • Okada K, Naruse H, Tanaka T, Nemoto O, Iwasaka Y, Wa P, Duce RA, Uematsu M, Merrill JT, Arao K (1990) X-ray spectrometry of individual Asian dust-storm particles over the Japanese islands and the North Pacific Ocean. Atmos Environ 24A:1369–1378

    Google Scholar 

  • Organisation for Economic Co-operation and Development (2005) OECD review of agricultural policies: China. Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  • Parkhurst DL, Apello CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Res Invest Rep 99–4259

  • Rao Z, Zhu Z, Chen F, Zhang J (2006) Does δ13Ccarb of Chinese loess indicate past C3/C4 abundance? A review of research on stable carbon isotopes of the Chinese loess. Quat Sci Rev 25:2251–2257

    Article  Google Scholar 

  • Scanlon BR, Nicot JP, Reedy RC, Kurtzman D, Mukherjee A, Nordstrom DK (2009) Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Appl Geochem 24:2061–2071

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio JO, Pearce JM, Alonso MS (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20:989–1016

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural water. Wiley, New York

    Google Scholar 

  • Veresoglou DS, Tsialtas JT, Barbayiannis N, Zalidis GC (1995) Caesium and strontium uptake by two pasture plant species grown in organic and inorganic soils. Ag Eco Environ 56:37–42

    Article  Google Scholar 

  • Walraevens K, Cardenal-Escarcena J, Van Camp M (2007) Reaction transport modelling of a freshening aquifer (Tertiary Ledo-Paniselian Aquifer, Flanders-Belgium). Appl Geochem 22:289–305

    Article  Google Scholar 

  • Wang Q, Li C, Tian G, Zhang W, Liu C, Ning L, Yue J, Cheng Z, He C (2002) Tremendous change of the earth surface system and tectonic setting of salt-lake formation in Yuncheng Basin since 7.1 Ma. Sci Chin (Series D) Earth Sci 45:110–122

    Google Scholar 

  • Yokoo Y, Nakano T, Nishikawa M, Quan H (2004) Mineralogical variation of Sr–Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific. Chem Geol 204:45–62

    Article  Google Scholar 

  • Yuncheng Regional Water Bureau (and Shanxi Geological Survey) (1982) Hydrological and Geological maps and explanations for the Yuncheng region, 1:100000. Shanxi Geological Survey Special Report (in Chinese), Yuncheng Regional Water Bureau, Yuncheng City, China

  • Zhu GF, Li ZZ, Su YH, Ma JZ, Zhang YY (2007) Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. J Hydrol 333:239–251

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly initiated and greatly supported by the Australia-China Water Resources Research Centre, including Dr. Deli Chen, Dr. Yongping Wei, Prof. Song Xianfang and Prof. Li Baoguo. Special thanks also to the Yuncheng City Water Resources Service Bureau, in particular Mr. Sun Xinzhong. We are thankful for the review comments provided by Dr. Sam Earman and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Currell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Currell, M.J., Cartwright, I. Major-ion chemistry, δ13C and 87Sr/86Sr as indicators of hydrochemical evolution and sources of salinity in groundwater in the Yuncheng Basin, China. Hydrogeol J 19, 835–850 (2011). https://doi.org/10.1007/s10040-011-0721-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0721-6

Keywords

Navigation