Skip to main content
Log in

Analysis of pumping test data for determining unconfined-aquifer parameters: Composite analysis or not?

Analyse de données d’un essai de pompage dans le but de déterminer les paramètres d’un aquifère libre: Analyse composite ou non?

Análisis de datos de ensayos de bombeo para determinar los parámetros de un acuífero no confinado. Análisis compuesto o no?

分析抽水试验数据确定潜水含水层参数 : 需否综合分析?

Análise de dados de ensaios de bombagem para determinação de parâmetros de aquíferos não confinados: Análise composta ou não?

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

An Erratum to this article was published on 09 October 2010

Abstract

Recently, composite analysis (CA), which simultaneously analyzes all drawdown data from multiple observation wells, has been applied to determine the hydraulic parameters of an unconfined aquifer. Moench (1994) claimed that the value of specific yield (S y) determined from non-composite analysis (nonCA) is sometimes unrealistically low as compared with that obtained by water-balance calculation, and results from CA are better representative of aquifer properties than those from nonCA. To examine the validity of this assertion, the drawdown data from a pumping test conducted at Cape Cod, Massachusetts, USA, were analyzed using both nonCA and CA methods. The results show that the mean estimates of hydraulic conductivity and S y determined from CA are close to those determined from nonCA. In some cases the analysis based on CA also results in low estimates of S y as compared with those determined based on nonCA. A hypothetical case study is presented, which examines the effect of measurement errors on the estimated parameters. The results indicate that the CA method also gives poorer estimates of S y than the nonCA method if the pumping test data contain measurement errors. Moench AF (1994) Specific yield as determined by type-curve analysis of aquifer-test data. Ground Water, 32(6):949–957.

Résumé

Récemment, l’analyse dite composite (CA), qui permet d’analyser simultanément toutes les données de rabattement de puits d’observation multiples a été appliquée afin de déterminer les paramètres hydrauliques d’un aquifère libre. Moench (1994) affirmait que la valeur de la porosité efficace (Sy) déterminée à l’aide d’une analyse non composite (nonCA) est parfois plus faible et irréaliste en comparaison avec la valeur obtenue à partir d’un calcul de bilan hydrique, et de plus que les résultats de la méthode CA sont plus proches des propriétés des aquifères que ceux obtenus par la méthode nonCA. Afin d’examiner la validité de cette affirmation, les données de rabattement d’un essai de pompage réalisé à Cape Cod dans le Massachusetts aux Etats-Unis d’Amérique, ont été analysées à l’aide des deux méthodes CA et nonCA. Les résultats indiquent que les valeurs moyennes de conductivité hydraulique et de Sy déterminés à l’aide de la méthode d’analyse CA sont proches de celles obtenues avec la méthode d’analyse nonCA. Dans certains cas, l’analyse basée sur la CA fournit aussi des valeurs faibles de Sy en comparaison de celles obtenues à l’aide de la nonCA. Un cas d’étude hypothétique est présenté, qui permet d’examiner l’effet des erreurs de mesures sur les paramètres estimés. Les résultats montrent que la méthode d’analyse CA fournit également des valeurs plus faibles de Sy que la méthode d’analyse nonCA, si les données de l’essai de pompage contiennent des erreurs de mesures. Moench AF (1994). Specific yield as determined by type-curve analysis of aquifer-test data [Débit spécifique tel qu’il est déterminé par l’analyse de la courbe type des données d’essai de nappe]. Ground Water, 32 (6): 949–957.

Resumen

Recientemente, los análisis compuestos (CA), que analizan simultáneamente todos los datos de depresión de pozos de observación múltiples, han sido aplicados para determinar los parámetros hidráulicos de un acuífero no confinado. Moench (1994) afirma que los valores de coeficiente de almacenamiento específico (S y) determinado a partir de análisis no compuesto (nonCA) es algunas veces poco realista comparado con aquellos obtenidos por cálculos de balance de agua, y los resultados a partir de CA son más representativos de las propiedades de los acuíferos que algunos a partir de nonCA. Para examinar la validez de esta aseveración, los datos de depresión a partir de ensayos de bombeo realizados en el Cape Cod, Massachusetts, EEUU, fueron analizados usando tanto los métodos CA como los nonCa. Los resultados muestran que las medias estimadas de la conductividad hidráulica y S y determinados a partir de CA son más próximos que aquellos determinados a partir de nonCA. En algunos casos los análisis basados en CA también da como resultados estimaciones bajas de S y comparado con aquellos determinados en base a non CA. Se presenta un hipotético caso de estudio que examina el efecto de los errores medidos en los parámetros estimados. Los resultados indican que el método CA también da estimaciones más pobres de S y que el método nonCA si los datos de los ensayos de bombeo contienen errores de medición. Moench AF (1994) Specific yield as determined by type-curve analysis of aquifer-test data. [Coeficiente de almacenamiento según lo determinado por el análisis de la curva-tipo de ensayos de bombeo]. Ground Water, 32(6):949–957.

摘要

近来, 综合分析 (CA) ––同时分析多口观测井的全部水位降深数据, 被用于确定潜水含水层的水力参数。Moench (1994) 指出, 由非综合分析 (nonCA) 得到的给水度 (Sy) 较由水均衡得到的有时低得不合实际, 而通过CA可得到较nonCA更具代表性的含水层参数。为检验这一断言的合理性, 对在美国马萨诸塞州科德角半岛进行的抽水试验的降深数据同时进行了非综合分析和综合分析。结果表明, 由CA得到的渗透系数和给水度的平均估计与nonCA相近。一些例子中也出现由CA所得的Sy估计值低于nonCA的结果。文中展示了一个假设的案例, 考察测量误差对估计参数的影响。结果表明, 若抽水试验的数据中含有测量误差, CA会给出较nonCA 方法为小的Sy。Moench AF (1994) Specific yield as determined by type-curve analysis of aquifer-test data [通过典型曲线分析抽水试验数据得到的给水度]。Ground Water, 32(6):949–957.

Resumo

A análise composta (composite analysis – CA), que analisa simultaneamente todos os dados de rebaixamento obtidos em vários furos de observação, foi recentemente aplicada para determinar os parâmetros hidráulicos de um aquífero não confinado. Moench (1994) afirmou que o valor do caudal específico (S y) determinado a partir de análises não compostas (nonCA) é por vezes irrealisticamente baixo, quando comparado com o valor obtido por cálculo do balanço hídrico e que os resultados obtidos a partir da CA representam melhor as propriedades do aquífero do que os obtidos por nonCA. Para verificar a validade desta afirmação, foram analisados os dados de rebaixamento de um ensaio de bombagem realizado em Cape Cod, Massachusetts, EUA, pelos dois métodos, nonCA e CA. Os resultados mostram que a média estimada para a condutividade hidráulica e para o caudal específico (S y), determinados com CA, estão próximos dos valores determinados com nonCA. Em alguns casos, em que se usou a análise composta, os valores estimados de S y são baixos, quando comparados com os valores determinados com base na nonCA. É apresentado o estudo de um caso hipotético em que se analisa o efeito dos erros de cálculo nos parâmetros estimados. Os resultados indicam que o método da análise composta (CA) dá estimativas mais pobres de S y do que o método da análise não composta (nonCA), se os dados do ensaio de bombagem tiverem erros de medição. Moench AF (1994) Specific yield as determined by type-curve analysis of aquifer-test data [Caudal específico determinado por análises de curvas tipo resultantes de dados de ensaios de caudal]. Ground Water, 32(6):949–957.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berthouex PM, Brown LC (2002) Statistics for Environmental Engineers, 2nd edn., Lewis, Boca Raton, FL

  • Boulton NS (1954) Unsteady radial flow to a pumped well allowing for delayed yield from storage. Int Assoc Sci Hydrol Publ 37:472–477

    Google Scholar 

  • Boulton NS (1963) Analysis of data from non-equilibrium pumping tests allowing for delayed yield from storage. Proc Inst Civil Eng 26:469–482

    Google Scholar 

  • Chen XH, Ayers JF (1998) Aquifer properties determined from two analytical solutions. Ground Water 36(5):783–791

    Article  Google Scholar 

  • Cooley RL, Case CM (1973) Effect of a water-table aquitard on drawdown in an underlying pumped aquifer. Water Resour Res 9(2):434–447

    Article  Google Scholar 

  • Cooper HH Jr, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. Trans Am Geophys Union 27(IV):526–534

    Google Scholar 

  • Dougherty DE, Marryott RA (1991) Optimal groundwater management. 1. Simulated Annealing. Water Resour Res 27(10):2493–2508

    Article  Google Scholar 

  • Ferris JG, Knowles DB, Brown RH, Stallman RW (1962) Theory of aquifer tests. US Geol Surv Water Suppl Pap 1536–E, pp 69–174

    Google Scholar 

  • Grimestad G (2002) A reassessment of ground water flow conditions and specific yield at Borden and Cape Cod. Ground Water 40(1):14–24

    Article  Google Scholar 

  • Heidari M, Moench AF (1997) Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares. J Hydrol 192(1):300–313

    Article  Google Scholar 

  • Huang YC, Yeh HD (2007) The use of sensitivity analysis in on-line aquifer parameter estimation. J Hydrol 335(3–4):406–418. doi:10.1016/j.jhydrol.2006.12.007

    Article  Google Scholar 

  • Huang YC, Yeh HD, Lin YC (2008) A computer method based on simulated annealing to identify aquifer parameters using pumping test data. Int J Numer Anal Methods Geomech 32(3):235–249

    Article  Google Scholar 

  • Hunt B (2006) Characteristics of unsteady flow to wells in unconfined and semi-confined aquifers. J Hydrol 325(1–4):154–163

    Article  Google Scholar 

  • Illman WA, Neuman SP (2001) Type-curve interpretation of a cross-hole pneumatic test in unsaturated fractured tuff. Water Resour Res 37(3):583–604

    Article  Google Scholar 

  • Illman WA, Neuman SP (2003) Steady-state analyses of cross-hole pneumatic injection tests in unsaturated fractured tuff. J Hydrol 281(1–2):36–54

    Article  Google Scholar 

  • Illman WA, Tartakovsky DM (2005) Asymptotic analysis of cross-hole pneumatic injection tests in unsaturated fractured tuff. Adv Water Resour 28(11):1217–1229

    Article  Google Scholar 

  • IMSL (1997) International mathematics and statistics library, vol 2. Visual Numerics, Houston, TX

    Google Scholar 

  • Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  Google Scholar 

  • Kollet SJ, Zlotnik VA (2005) Influence of aquifer heterogeneity and return flow on pumping test data interpretation. J Hydrol 300:267–285

    Article  Google Scholar 

  • Mania J, Sucche M (1978) Automatic analysis of pumping test data: application to the Boulton and Hantush hypothesis. J Hydrol 37(1/2):185–194

    Article  Google Scholar 

  • Marryott RA, Dougherty DE, Stollar RL (1993) Optimal groundwater management 2. Application of simulated annealing to a field-scale contamination site. Water Resour Res, 29 (4):847–860.

    Article  Google Scholar 

  • Masterson JP, Stone BD, Walters DA, Savoie J (1997) Hydrogeologic framework of western Cape Cod, Massachusetts. US Geol Surv Hydrol-Invest Atlas HA–741

  • Meier PM, Carrera J, Sanchez-Vila X (1998) An evaluation of Jacob’s method for the interpretation of pumping tests in heterogeneous formations. Water Resour Res 34(5):1011–1025

    Article  Google Scholar 

  • Moench AF (1994) Specific yield as determined by type-curve analysis of aquifer-test data. Ground Water 32(6):949–957

    Article  Google Scholar 

  • Moench AF (1995) Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer. Ground Water 33(3):378–384

    Article  Google Scholar 

  • Moench AF (1997) Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer. Water Resour Res 33(6):1397–1407

    Article  Google Scholar 

  • Moench AF, Garabedian SP, LeBlanc DL (2001) Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts. US Geol Surv Open-File Rep 00–485

  • Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear regression models, Irwin, Chicago, IL

  • Neuman SP (1972) Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resour Res 8(4):1031–1044

    Article  Google Scholar 

  • Neuman SP (1974) Effects of partial penetration on flow in unconfined aquifers considering delayed aquifer response. Water Resour Res 10(2):303–312

    Article  Google Scholar 

  • Neuman SP (1975) Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response. Water Resour Res 11(2):329–342

    Article  Google Scholar 

  • Nwankwor GI, Cherry JA, Gillham RW (1984) A comparative study of specific yield determinations for a shallow sand aquifer. Ground Water 22(6):764–772

    Article  Google Scholar 

  • Prickett TA (1965) Type-curve solution to aquifer tests under water-table conditions. Ground Water 3:5–14

    Article  Google Scholar 

  • Tartakovsky GD, Neuman SP (2007) Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer. Water Resour Res 43,W01410. doi:10.1029/2006WR005153

    Article  Google Scholar 

  • Wu CM, Yeh JTC, Zhu J, Lee TH, Hsu NS, Chen CH, Sancho AF (2005) Traditional analysis of aquifer tests: Comparing apples to oranges? Water Resour Res 41,W09402. doi:10.1029/2004WR003717

    Article  Google Scholar 

  • Yeh HD (1987) Theis’ solution by nonlinear least-squares and finite-difference Newton’s method. Ground Water 25(6):710–715

    Article  Google Scholar 

  • Yeh HD, Chen YJ (2007) Determination of skin and aquifer parameters for a slug test with wellbore-skin effect. J Hydrol 342:283–294. doi:10.1016/j.jhydrol.2007.05.029

    Article  Google Scholar 

  • Yeh HD, Chang TH, Lin YC (2007a) Groundwater contaminant source identification by a hybrid heuristic approach. Water Resour Res 43:W09420. doi:10.1029/2005WR004731

    Article  Google Scholar 

  • Yeh HD, Lin YC, Huang YC (2007b) Parameter identification for leaky aquifers using heuristic approaches. Hydrol process (21):862–872. doi:10.1002/hyp.6274

    Article  Google Scholar 

  • Zhan H, Zlotnik VA (2002) Ground water flow to horizontal or slanted wells in unconfined aquifer. Water Resour Res 38(7):1108

    Article  Google Scholar 

Download references

Acknowledgements

Research leading to this paper has been partially supported by grants from Taiwan National Science Council under the contract number NSC96–2221–E–009–087-MY3. The authors would also like to thank the associate editor and three anonymous reviewers for their valuable and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hund-Der Yeh.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10040-010-0656-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, HD., Huang, YC. Analysis of pumping test data for determining unconfined-aquifer parameters: Composite analysis or not?. Hydrogeol J 17, 1133–1147 (2009). https://doi.org/10.1007/s10040-008-0413-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0413-z

Keywords

Navigation