Skip to main content
Log in

The conceptualization model problem—surprise

Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The foundation of model analysis is the conceptual model. Surprise is defined as new data that renders the prevailing conceptual model invalid; as defined here it represents a paradigm shift. Limited empirical data indicate that surprises occur in 20–30% of model analyses. These data suggest that groundwater analysts have difficulty selecting the appropriate conceptual model. There is no ready remedy to the conceptual model problem other than (1) to collect as much data as is feasible, using all applicable methods—a complementary data collection methodology can lead to new information that changes the prevailing conceptual model, and (2) for the analyst to remain open to the fact that the conceptual model can change dramatically as more information is collected. In the final analysis, the hydrogeologist makes a subjective decision on the appropriate conceptual model. The conceptualization problem does not render models unusable. The problem introduces an uncertainty that often is not widely recognized. Conceptual model uncertainty is exacerbated in making long-term predictions of system performance.

Résumé

C’est le modèle conceptuel qui se trouve à base d’une analyse sur un modèle. On considère comme une surprise lorsque le modèle est invalidé par des données nouvelles; dans les termes définis ici la surprise est équivalente à un change de paradigme. Des données empiriques limitées indiquent que les surprises apparaissent dans 20 à 30% des analyses effectuées sur les modèles. Ces données suggèrent que l’analyse des eaux souterraines présente des difficultés lorsqu’il s’agit de choisir le modèle conceptuel approprié. Il n’existe pas un autre remède au problème du modèle conceptuel que: (1) rassembler autant des données que possible en utilisant toutes les méthodes applicables—la méthode des données complémentaires peut conduire aux nouvelles informations qui vont changer le modèle conceptuel, et (2) l’analyste doit rester ouvert au fait que le modèle conceptuel peut bien changer lorsque des nouvelles informations apparaissent. Dans l’analyse finale le hydrogéologue prend une décision subjective sur le modèle conceptuel approprié. Le problème du le modèle conceptuel ne doit pas rendre le modèle inutilisable. Ce problème introduit une incertitude qui n’est pas toujours reconnue. Les incertitudes du modèle conceptuel deviennent plus importantes dans les cases de prévisions à long terme dans l’analyse de performance.

Resumen

La base para hacer un análisis de un modelo es el modelo conceptual. Se define aquí la sorpresa como los datos nuevos que convierten en incoherente al modelo conceptual previamente aceptado; tal como se define aquí esto representa un cambio de paradigma. Los datos empíricos limitados indican que estas sorpresas suceden entre un 20 a un 30% de los análisis de modelos. Esto sugiere que los analistas de modelos de agua subterránea tienen dificultades al seleccionar el modelo conceptual apropiado. No hay otra solución disponible a este problema del modelo conceptual diferente de: (1) Recolectar tanta información como sea posible, mediante la utilización de todos los métodos aplicables, lo cual puede resultar en que esta nueva información ayude a cambiar el modelo conceptual vigente, y (2) Que el analista de modelos se mantenga siempre abierto al hecho de que un modelo conceptual puede cambiar de manera total, en la medida en que se colecte mas información. En el análisis final el hidrogeólogo toma una decisión subjetiva en cuanto al modelo conceptual apropiado. El problema de la conceptualización no produce modelos inútiles. El problema presenta una incertidumbre, la cual a menudo no es tenida en cuenta de manera adecuada. Esta incertidumbre en los modelos conceptuales se aumenta, cuando se hacen predicciones a largo plazo del comportamiento de un sistema dado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Alley WM, Emery PA (1986) Groundwater model of the Blue River basin, Nebraska—twenty years later. J Hydrol 85:225–249

    Article  Google Scholar 

  • Anderson MP, Woessner WW (1992) The role of postaudit in model validation. Adv Water Resour 15:167–173

    Article  Google Scholar 

  • Anderson TW (1968) Electric analog analysis of ground-water depletion in central Arizona. U.S. Geological Survey Water-Supply Paper 1860, 21 pp

  • Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40:340–345

    PubMed  Google Scholar 

  • Bredehoeft JD (2003) From models to performance assessment—the conceptualization problem. Ground Water 41:571–577

    Google Scholar 

  • Carrera J, Neuman SP (1986) Estimation of aquifer parameters under steady-state and transient conditions. Water Resour Res 22:199–210

    Google Scholar 

  • Flavelle P, Nguyen S, Napier W (1991) Lessons learned from model validation—a regulatory perspective: in GEOVAL-1990: symposium on validation of gepsphere flow and transport models. Organization for Economic Co-Operation (OECD), Nuclear Energy Agency, Paris, France, pp 441–448

  • Hill MC, Banta ER, Harbaugh AW, Anderman ER (2000) Modflow-2000, the U.S. Geological Survey modular ground-water model: user guide to observation, sensitivity, and parameter estimation processes, and three post-processing programs: U.S. Geological Survey Open-File Report 2000-184, 209 pp

  • Jacob CE (1940) On the flow of water in an elastic artesian aquifer. Transactions of American Geophysical Union, part 2, pp 585–586

  • Jorgensen DG (1981) Geohydrologic models of the Houston District, Texas. Ground Water 28:418–428

    Google Scholar 

  • Konikow LF (1986) Predictive accuracy of a ground-water model—lessons from a postaudit. Ground Water 24:173–184

    Google Scholar 

  • Konikow LF (1995) The value of postaudits in groundwater model applications. In: El-Kadi AI (ed) Groundwater models for resources analysis and management. Lewis Publishers—CRC, Boca Raton, FL, pp 59–78

  • Konikow LF, Bredehoeft JD (1974) Modeling flow and chemical-quality changes in an irrigated stream-aquifer system. Water Resour Res 10:546–562

    Google Scholar 

  • Konikow LF, Person M (1985) Assessment of long-term salinity changes in an irrigated stream-aquifer system. Water Resour Res 21:1611–1624

    Google Scholar 

  • Konikow LF, Sanford WE, Campbell PJ (1997) Constant concentration boundary condition: lessons from the HYDRCOIN variable-density groundwater benchmark problem. Water Resour Res 33:2253–2261

    Article  Google Scholar 

  • Konikow LF, Swain LA (1990) Assessment of predictive accuracy of a model of artificial recharge effects in the Coachella Valley, California. In: Simpson ES, Sharp JM Jr (eds) Selected papers on hydrogeology from the 28th Geological Congress. Verlag Heinz Heise, Washington, DC, USA, pp 433–449

    Google Scholar 

  • Lewis BD, Goldstein FJ (1982) Evaluation of a predictive ground-water solute-transport model at the Idaho National Engineering Laboratory testing station, Idaho. U.S. Geological Survey Water Resources Investigation 82–85:71

    Google Scholar 

  • Los Alamos National Laboratory (LANL) (1997) Performance Assessment and Composite Analysis for the Los Alamos Material Disposal Area G: Report-54G-013.R.2 (Appendix 2c—analysis of liquid phase transport in the unsaturated zone at a mesa top disposal facility, p 28)

    Google Scholar 

  • Mason RG (1958) A magnetic survey off the west coast of North America between latitudes 36 and 38° N and 121 and 128° W. Geophys J 1:320-329

    Google Scholar 

  • Neuman SP (2003) Maximum likelihood Bayesian averaging of alternative conceptual mathematical models. Stochastic Environ Res Risk Assess 17(5):291–305, doi: 10.1007/s00477-003-0151-7

    Article  Google Scholar 

  • Neuman SP, Wierenga PJ (2003) A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. NUREG/CR-6805, U.S. Nuclear Regulatory Commission, Washington, DC

  • Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in earth sciences. Science 263:641–646

    Google Scholar 

  • Oreskes N, Belitz K (2001) Philosophical issues in model assessment. Chapter 3. In: Anderson MG, Bates PD (eds) Model validation: perspectives in hydrological sciences. Wiley, NewYork, pp 23–41

  • Robertson JB (1974) Digital modeling of radioactive and chemical waste transport in the Snake River Plain aquifer at the National reactor Testing Station, Idaho. U.S. Geological Survey Open-File Report. IDO—22054, 41 pp

  • Sun MZ, Jeng MC, Yeh WWG (1995) A proposed geological parameterization method of parameter identification in three dimensional groundwater modeling. Water Resour Res 31:89–102

    Article  Google Scholar 

  • Swain LA (1978) Predicted water-level and water-quality effects of artificial recharge in the upper Coachella Valley, California, using a finite-element digital model. U.S. Geological Survey Water-Resources Investigation 77–29:54

    Google Scholar 

  • Theis CV (1935) The relation between lowering the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Transactions American Geophysical Union, 16th Annual Meeting, part 2, pp 519–524

  • Tsai FTC, Sun NZ, Yeh WWG (2003a) Global-local optimization for parameter structure identification in three-dimensional groundwater modeling. Water Resour Res 39:1043

    Article  Google Scholar 

  • Tsai FTC, Sun NZ, Yeh WWG (2003b) A combinatorial optimization scheme for parameter structure identification in groundwater modeling. Ground Water 41:156–169

    Google Scholar 

  • Vine FJ, Mathews DH (1963) Magnetic anomalies over oceanic ridges. Nature 199:947–949

    Google Scholar 

  • Zheng C, Bennett G (1995) Applied contaminant transport modeling. Wiley, NewYork

Download references

Acknowledgements

I wish to thank several of my colleagues for their thoughtful comments and review. In particular my thanks go to Jesus Carrera, Leonard Konikow, Shlomo Neuman, Naomi Oreskes, Robert Schneider, Clifford Voss, and Chunmiao Zheng, and for their suggestions and constructive criticism

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Bredehoeft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bredehoeft, J. The conceptualization model problem—surprise. Hydrogeol J 13, 37–46 (2005). https://doi.org/10.1007/s10040-004-0430-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0430-5

Keywords

Navigation