Skip to main content
Log in

Using solver to determine vertical groundwater velocities by temperature variations, Purdue University, Indiana, USA

  • Technical Note
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Vertical groundwater velocities can be estimated based on directions of groundwater thermal gradients. Temperature-depth profiles were obtained from 12 monitoring wells at 3 different times of the year (Fall, Winter, and Spring) in West Lafayette, Indiana (USA) mainly on the Purdue University campus. Microsoft Excel Solver was used to match plots of groundwater temperature distribution in the wells with published type curves in order to find a dimensionless parameter β, from which vertical groundwater velocities were obtained. The vertical groundwater velocities found in the monitoring wells ranged from 0.92 to 4.53 cm/yr. Clay-rich aquitards presented greater vertical groundwater velocities than outwash aquifers. The highest groundwater velocities occurred in the Spring while the lowest were during the Winter. This method was found to be especially useful in glacially-derived materials with varying hydraulic conductivities for estimating vertical groundwater velocities in-situ.

Résumé

Les vitesses verticales des eaux souterraines peuvent être estimées d’après les directions du gradient thermique. On a mesuré la variation de la température avec la profondeur dans douze forages de monitoring dont la plupart se trouvent dans le campus de l’Université de Purdue-Indiana, États -Unies. Les mesures ont été effectuées pendant trois périodes différentes: l’automne, l’hiver et le printemps. Le Solver de Microsoft Excel a été utilisé pour caler les graphiques de la température mesurés dans les forages sur les abaques publiées affin d’obtenir un paramètre non dimensionnel, soit ?Ò?z?n d’où on peut obtenir les vitesses verticales de l’eau. Les valeurs des vitesses verticales se rangent entre 0.92 cm/an et 4.53 cm/an. Dans les aquidard argileux les vitesses verticales présentent des valeurs plus grandes par rapport aux ceux obtenues dans les aquifères cantonnés dans des dépôts glaciaires. Les plus grandes vitesses ont été mesurées pendant le printemps tendis que les valeurs les plus basses apparaissent pendant l’hiver. Cete méthode est surtout utile pour déterminer in situ les vitesses verticales dans les matériaux glaciaires avec des conductivités hydrauliques variables.

Resumen

Las velocidades verticales de aguas subterráneas pueden ser calculadas en base a direcciones de gradientes térmicos de aguas subterráneas. Perfiles de profundidades y temperaturas de aguas subterráneas fueron obtenidos de doce pozos de monitoreo durante diferentes épocas del año (otoño, invierno, y primavera) en la ciudad de West Lafayette, Indiana (Estados Unidos de América), principalmente en el campus de la Universidad de Purdue. Microsoft Excel Solver fue usado para igualar la distribución de las temperaturas de aguas subterráneas de los pozos con un conjunto de curvas ya existentes para encontrar un parámetro β sin ninguna dimensión, del cual se generaron velocidades verticales de aguas subterráneas. Las velocidades verticales de aguas subterráneas obtenidas en los pozos de monitoreo variaron de 0.92 cm/yr a 4.53 cm/yr. Los acuitardos arcillosos presentaron velocidades verticales de aguas subterráneas más altas que los acuiferos compuestos de arenas y gravas. Las velocidades de aguas subterráneas más altas ocurrieron durante la primavera, mientras que las más bajas se presentaron en el invierno. El método usado en esta investigación resultó útil para determinar velocidades verticales de aguas subterráneas in-situ, particularmente en materiales glaciales de distintas conductividades hidráulicas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a,b
Fig. 7
Fig. 8a,b

Similar content being viewed by others

References

  • Arihood LD (1982) Groundwater resources of the White River Basin, Hamilton and Tiptop Counties, Indiana. U.S. Geological Survey Water-Resources Investigations 82–48

  • Arriaga MA (2002) Finding vertical groundwater velocities using temperature-depth profiles in West Lafayette, Indiana. MS, Purdue University, USA

  • Bense VF, Kooi H (2004) Temporal and spatial variations of shallow subsurface temperature as a record of lateral variations in groundwater flow. J Geophys Res 109, B04103

  • Birch AF, Schairer JF, Spicer HC (1942) Handbook of physical constants. Geol Soc Am Special Paper, 36 pp

  • Boyle JM, Saleem ZA (1979) Determination of recharge rates using temperature-depth profiles in wells. Water Resour Res 15(6):1616–1622

    Google Scholar 

  • Bredehoeft JD, Papadopulos IS (1965) Rates of vertical groundwater movement estimated from the earth’s thermal profile. Water Resour Res 1(2):325–328

    Google Scholar 

  • Bruns TM, Logan SM, Steen WJ (1985) Map showing bedrock topography of the Teays Valley, western part, north-central Indiana. Indiana Geol Survey, Miscellaneous Map 43

  • Cartwright K (1979) Measurement of fluid velocity using temperature profiles: Experimental verification. J Hydrol 43:185–194

    Article  Google Scholar 

  • Daniels DP, Fritz SJ, Leap DI (1991) Estimating recharge rates through unsaturated glacial till by tritium tracing. Groundwater 29:26–34

    Google Scholar 

  • Diment WH (1967) Thermal regime of a large diameter borehole: Instability of the water column and comparison of air and water filled conditions. Geophysics 32(4):720–726

    Article  Google Scholar 

  • Fetter CW (1994) Applied hydrogeology, 3rd edn. Prentice Hall, New Jersey, 598 pp

  • Freeze RA, Cherry JA (1979) Groundwater, 1st edn. Prentice Hall, New Jersey

  • Gretener PE (1967) On the thermal instability of large diameter wells: An observational report. Geophysics 32(4):727–738

    Article  Google Scholar 

  • Harvey FE (1990) A hydrogeochemical investigation of the aquifer system near West Lafayette, Indiana. MS, Purdue University, USA

  • Krige LJ (1939) Borehole temperatures in the Transvaal and Orange Free State. Proc Royal Soc Lond A173(955):450–474

    Google Scholar 

  • Lasdon L, Waren A, Watson J, Fylstra D (1998) Design and use of the Microsoft Excel Solver. Interfaces 28, September-October, pp 29–55

  • Lu N, Ge S (1996) Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer. Water Resour Res 32:1449–1453

    Article  Google Scholar 

  • Pohlmann KF (1987) An investigation of the groundwater resources in the Wabash valley glacial deposits near West Lafayette, Indiana. MS, Purdue University, USA

  • Saleem ZA (1970) A computer method for pumping-test analysis. Groundwater 8(5):21–24

    Google Scholar 

  • Sammel EA (1968) Convective flow and its effect on temperature logging in small diameter wells. Geophysics 33(6):1004–1012

    Article  Google Scholar 

  • Sorey ML (1971) Measurement of vertical groundwater velocity from temperature profiles in wells. Water Resour Res 7(4):963–970

    Google Scholar 

  • Stallman RW (1960) Notes on the use of temperature data for computing groundwater velocity, Groundwater notes 39. U.S. Geological Survey, Washington, DC

  • Stallman RW (1967) Flow in the zone of aeration. In: Chow VT (ed) Advances in Hydroscience. Academic Press, New York, pp 151–195

  • Taniguchi M (1993) Evaluation of vertical groundwater fluxes and thermal profiles of aquifers based on transient temperature-depth profiles. Water Resour Res 29:2021–2026

    Article  Google Scholar 

  • Van Orstrand CE (1934) Temperature gradients in Problems of Petroleum Geology. Am Assoc Petroleum Geologists, pp 989–1021

  • Wade S (1994) A hydrothermal study to estimate vertical groundwater flow in the Cañutillo Well Field, between Las Cruces and El Paso. MS, New Mexico Water Resources Research Institute, USA

  • Weinreb G (1987) A hydrogeologic investigation of thermal contamination within the Wabash valley outwash aquifer, West Lafayette, Indiana. MS, Purdue University, USA

Download references

Acknowledgements

It is acknowledged the generous cooperation of the Physical Facilities Utilities Crew of Purdue University who offered its assistance in order to have access to the monitoring wells. The Department of Earth and Atmospheric Sciences provided funding for the purchase of the groundwater temperature monitoring instrumentation. Special thanks to Dr. Shirley Wade and Anatol Zingg for their contribution and help in taking the temperature measurements in the field as well as to Jose Garcia for drawing some of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Arriaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arriaga, M.A., Leap, D.I. Using solver to determine vertical groundwater velocities by temperature variations, Purdue University, Indiana, USA. Hydrogeol J 14, 253–263 (2006). https://doi.org/10.1007/s10040-004-0381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0381-x

Keywords

Navigation