Skip to main content
Log in

A reactive flow model of the geothermal reservoir Waiwera, New Zealand

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A numerical model of the complex interaction between fluid flow, heat transfer, and chemical reactions of the shallow, coastal, hydrothermal system of Waiwera (New Zealand) is used to test the proposed conceptual model of the field.

Due to declining water levels, resulting from over-exploitation during the 1970s, the objective here was to set up a coupled fluid flow and heat transfer model to help in enabling a predictive and sustainable use of the resource. The presented conceptual model of the area is based on hydraulic, thermal, and chemical field observations, which date back as far as 1863. The numerical simulations were carried out with the reactive transport code SHEMAT.

The inflow of geothermal water at the bottom of the reservoir prevents seawater from entering the aquifer. If seawater intrusion occurs, it is due to over-exploitation and happens in the upper parts of the aquifer. This is in contrast to common seawater-freshwater interfaces where seawater intrudes at the bottom. The numerical investigations emphasize that, after modifications of the production regime in the late 1980s, the system is recovering again.

Additionally, geochemical calculations have been conducted to answer the question if dissolution or precipitation reactions might change the hydraulic properties of the geothermal aquifer. Mixing of fresh, geothermal, and seawater, although each of them in thermodynamic equilibrium with calcite, lead to calcite precipitation or dissolution. Nevertheless, the simulations show that the hydraulic properties of the aquifer are not significantly affected by dissolution or precipitation.

Résumé

Un modèle numérique de l’interaction complexe entre l’écoulement de l’eau, le transfert de chaleur et les réactions chimiques du système hydrothermal côtier peu profond de Waiwera (Nouvelle-Zélande) est utilisé afin de tester le modèle conceptuel. L’objectif est de bâtir un modèle couplé d’écoulement et de transfert de chaleur afin d’encourager une approche prévisioniste et une utilisation durable de la ressource en réponse à des niveaux d’eau en déclin qui résultent d’une surexploitation depuis les années 1970. Le modèle conceptuel présenté est basé sur des observations de terrain concernant l’hydraulique, la température et la composition chimique de l’aquifère, des observations qui peuvent dater d’aussi loin que 1863. Les simulations numériques ont été réalisées avec le modèle de transport SHEMAT. L’entrée d’eau géothermale à la base du réservoir préviens l’intrusion d’eau de mer dans l’aquifère. Si l’intrusion d’eau de mer a lieu, elle est due à la surexploitation qui a lieu dans la partie supérieure de l’aquifère. Cette situation est l’opposée des interfaces eau de mer - eau douce traditionnelles où l’eau de mer pénètre par la base. Les simulations numériques suggèrent que suite aux modifications du régime de production à la fin des années 1980, le système récupère. De plus, des calculs géochimiques ont été effectués afin de répondre à la question à savoir si les réactions de dissolution et de précipitation changent les propriétés hydrauliques de l’aquifère géothermal. Le mélange de l’eau douce, l’eau géothermale et l’eau de mer, même si elle sont tous en équilibre thermodynamique avec la calcite, provoque la dissolution ou précipitation de la calcite. Néanmoins, les simulations montrent que les propriétés hydrauliques de l’aquifère ne sont pas significativement affectées par la dissolution ou la précipitation.

Resumen

Se ha utilizado un modelo numérico de la interacción compleja entre el flujo de fluidos, la transferencia de calor y las reacciones químicas del sistema hidrotermal costero poco profundo de Waiwera (Nueva Zelanda) con el objeto de probar el modelo conceptual del área propuesto. Debido a los niveles de agua decrecientes, el objetivo de este trabajo es establecer un modelo pareado del flujo de aguas y de la transferencia de calor para colaborar en el uso predecible y sostenible del recurso. El modelo conceptual del área presentado está basado en observaciones de terreno hidráulicas, termales y químicas que datan de 1863. Las simulaciones se llevaron a cabo con el código de transporte reactivo SHEMAT. El influjo de agua geotermal al fondo del reservorio impide que el agua de mar entre en el acuífero. Si la intrusión de agua de mar se presenta, esto sucede a causa de la sobreexplotación y ocurre en las partes superiores del acuífero. Esto contrasta con las interfaces comunes de agua de mar-agua dulce donde la intrusión del agua de mar se da al fondo. Las investigaciones numéricas enfatizan que el sistema se está recuperando de nuevo luego de las modificaciones al regimen de producción a fines de los 80. Adicionalmente, los cálculos geoquímicos están dirigidos a contestar si las reacciones de disolución o precipitación pueden cambiar las propiedades hidráulicas del acuífero geotérmico. La mezcla de agua dulce, geotermal y de mar causa precipitación o disolución de calcita a pesar de que cada una de ellas se encuentra en equilibrio termodinámicao con la calcita. Sin embargo, las simulaciones muestran que las propiedades hidráulicas del acuífero no son afectadas siginificativamente por la disolución o precipitación.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Alvarez J (1986) A reservoir model of the Waiwera warm water system. Geothermal Institute, University of Auckland, Report No. 86.02

  • ARC (1991) Waiwera geothermal groundwater resources statement and allocation plan. Auckland Regional Council, Technical Publication No. 112

  • ARC (1999) Waiwera geothermal groundwater resource assessment report. Auckland Regional Council, Technical Publication No. 115

  • ARWB (1980) Waiwera water resource survey – Preliminary water allocation/management plan. Auckland Regional Water Board, Technical Publication No. 17

  • ARWB (1987) Waiwera thermal groundwater allocation and management plan 1986. Auckland Regional Water Board, Technical Publication No. 39

  • Bartels J, Kühn M, Clauser C (2003) Numerical simulation of reactive flow using SHEMAT. In: Clauser C (ed) Numerical simulation of reactive flow in hot aquifers—SHEMAT and Processing SHEMAT. Springer, Berlin Heidelberg New York, pp 5–74

  • Clauser C (2003) Numerical simulation of reactive flow in hot aquifers—SHEMAT and Processing SHEMAT. Springer, Berlin Heidelberg New York, 332 pp

  • Chapman MG (1998) Investigation of the Dynamics of the Waiwera Geothermal Groundwater System, New Zealand, M.Sc. Thesis, University of Waikato (unpublished)

  • Freeze CA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJ, 604 pp

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca indicators. Geochimica et Cosmochimica Acta 52:2749–2765

    Article  CAS  Google Scholar 

  • Gonzalez CN (1986) Interpretation of downhole temperature survey at Waiwera thermal area. Geothermal Institute, University of Auckland, Report no. 86.07

  • Häfner F, Sames D, Voigt H-D (1992) Wärme und Stofftransport. Springer, Berlin Heidelberg New York

  • Kühn M (2003) Chemical equilibrium speciation for brines at high temperatures and ionic strength. In: Clauser C (ed) Numerical simulation of reactive flow in hot aquifers—SHEMAT and Processing SHEMAT. Springer, Berlin Heidelberg New York, pp 153-170

  • Kühn M, Stöfen H, Schneider W (2001) Coupled flow, heat transfer, solute transport, and chemical reactions within the thermal water reservoir Waiwera, New Zealand. In: Seiler K-P, Wohnlich S (eds) New Approaches Characterizing Groundwater Flow. Balkema, Rotterdam, pp 1001–1005

  • Pandey OMP (1982) Terrestrial heat flow in New Zealand. Ph.D. Thesis, Victoria University of Wellington, New Zealand, (unpublished)

  • Pape H, Clauser C, Iffland J (1999) Permeability prediction for reservoir sandstones based on fractal pore space geometry. Geophysics 64(5):1447–1460

    Article  Google Scholar 

  • Rockel I (1986) Taking the waters. Early spas in New Zealand. Government Printing Office Publishing

  • Rowe AM, Chou JCS (1970) Pressure-volume-temperature-concentration relation of aqueous NaCl solutions. J Chem Eng Data 15:61–66

    CAS  Google Scholar 

  • Stöfen H (2000) Development of a heat transfer and solute transport model as a tool for sustainable management of the thermal water resource Waiwera, New Zealand. Master Thesis, Technische Universität Hamburg-Harburg (unpublished)

  • Stöfen H, Kühn M (2003) Waiwera Coastal Geothermal System. In: Clauser C (ed) Numerical simulation of reactive flow in hot aquifers—SHEMAT and Processing SHEMAT. Springer, Berlin Heidelberg New York, pp 297–316

  • Stöfen H, Kühn M, Schneider W (2000) A heat transfer and solute transport model as a tool for sustainable management of the geothermal reservoir Waiwera, New Zealand. In: Simmons SF, Morgan OE, Dunstall MG (eds) Proc 22nd New Zealand Geothermal Workshop 2000 Geothermal Institute, University of Auckland, pp 273–278

  • Weeber JH, Brown LJ, White PA, Russell WJ, Thorpe HR (2001) A history of groundwater development in New Zealand. In: Rosen MR, White PA (eds) Groundwaters of New Zealand. New Zealand Hydrological Society, The Caxton Press, Christchurch, New Zealand, pp 5–44

Download references

Acknowledgements

The research reported in this paper was supported by the German Federal Ministry for Education, Science, Research, and Technology (BMBF) under grant 032 69 95 and the German Federal Ministry for Economic Affairs (BMWi) under grant 032 70 95. The authors wish to thank Prof. Patrick R.L. Browne, Prof. Arnold Watson, and the staff of the Geothermal Institute at the University of Auckland as well as Stephen Crane from the Auckland Regional Council for the all-embracing support during the studies of the Waiwera geothermal field. Furthermore we wish to thank Francisco da Costa Monteiro for the help during the field studies. Special thanks are given to P. Upton and E. Bardsley for the highly constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kühn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühn, M., Stöfen, H. A reactive flow model of the geothermal reservoir Waiwera, New Zealand. Hydrogeol J 13, 606–626 (2005). https://doi.org/10.1007/s10040-004-0377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0377-6

Keywords

Navigation