Skip to main content
Log in

The distribution of meteoric 36Cl/Cl in the United States: a comparison of models

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The natural distribution of 36Cl/Cl in groundwater across the continental United States has recently been reported by Davis et al. (2003). In this paper, the large-scale processes and atmospheric sources of 36Cl and chloride responsible for controlling the observed 36Cl/Cl distribution are discussed.

The dominant process that affects 36Cl/Cl in meteoric groundwater at the continental scale is the fallout of stable chloride from the atmosphere, which is mainly derived from oceanic sources. Atmospheric circulation transports marine chloride to the continental interior, where distance from the coast, topography, and wind patterns define the chloride distribution. The only major deviation from this pattern is observed in northern Utah and southern Idaho where it is inferred that a continental source of chloride exists in the Bonneville Salt Flats, Utah.

In contrast to previous studies, the atmospheric flux of 36Cl to the land surface was found to be approximately constant over the United States, without a strong correlation between local 36Cl fallout and annual precipitation. However, the correlation between these variables was significantly improved (R 2=0.15 to R 2=0.55) when data from the southeastern USA, which presumably have lower than average atmospheric 36Cl concentrations, were excluded. The total mean flux of 36Cl over the continental United States and total global mean flux of 36Cl are calculated to be 30.5±7.0 and 19.6±4.5 atoms m−2 s−1, respectively.

The 36Cl/Cl distribution calculated by Bentley et al. (1986) underestimates the magnitude and variability observed for the measured 36Cl/Cl distribution across the continental United States. The model proposed by Hainsworth (1994) provides the best overall fit to the observed 36Cl/Cl distribution in this study. A process-oriented model by Phillips (2000) generally overestimates 36Cl/Cl in most parts of the country and has several significant local departures from the empirical data.

Résumé

La distribution naturelle du rapport 36Cl/Cl dans les eaux souterraines des États-Unis a été récemment présentée par Davis et al. (2003). Dans ce travail, les processus à grande échelle et les sources atmosphériques de 36Cl et de chlorure responsables du contrôle de la distribution observée du rapport 36Cl/Cl sont discutés. Le processus dominant qui affecte le rapport 36Cl/Cl dans les eaux souterraines d’origine météorique à l’échelle continentale est l’apport atmosphérique de chlorure stable, qui provient pour l’essentiel de sources océaniques. La circulation atmosphérique transporte des chlorures marins vers l’intérieur des continents, où la distribution de chlorure est définie par la distance à la côte, la topographie et les régimes des vents. La seule exception majeure à ce schéma est observée dans le nord de l’Utah et le sud de l’Idaho où l’on suppose qu’il existe une source continentale de chlorure dans les bas-fonds salés de Bonneville. Au contraire de précédentes études (Knies et al. 1994; Phillips 2000), on trouve que le flux atmosphérique de 36Cl vers le sol est approximativement constant sur l’ensemble des États-Unis, sans forte corrélation entre la retombée locale de 36Cl et les précipitations annuelles. Cependant, la corrélation entre ces variables devient significative (R 2=0.15 à 0.55) lorsqu’on supprime les données du sud-est des États-Unis, dont on pense qu’elles présentent des concentrations en 36Cl atmosphérique inférieures à la moyenne. Le flux total moyen de 36Cl sur les États-Unis continentaux et le flux moyen global de 36Cl sont respectivement évalués à 30.5 ± 7.0 et 19.6 ± 4.5 atomes.m–2.s–1. La distribution du rapport 36Cl/Cl calculée par Bentley et al. (1986) sous-estime l’ordre de grandeur et la variabilité observés pour la distribution mesurée du rapport 36Cl/Cl sur les États-Unis continentaux. Le modèle proposé par Hainsworth (1994) fournit le meilleur ajustement d’ensemble à la distribution du rapport 36Cl/Cl observée dans cette étude. Un modèle orienté vers les processus proposé par Phillips (2000) surestime dans l’ensemble le rapport 36Cl/Cl dans la plupart des régions du pays et présente plusieurs désaccords locaux avec les données empiriques.

Resumen

Davis et al. (2003) han informado de la distribución natural de la proporción 36Cl/Cl en las aguas subterráneas de la parte continental de los Estados Unidos de América [EUA]. En este artículo, se discute cuáles son los procesos a gran escala y las fuentes atmosféricas del 36Cl y del cloruro que dan lugar a la distribución observada de 36Cl/Cl.

El proceso dominante que afecta a la relación 36Cl/Cl en las aguas subterráneas de origen meteórico a escala continental es el aporte de cloruro estable desde la atmósfera, que procede principalmente de los océanos. La circulación atmosférica transporta el cloruro marino hacia el interior, donde la distancia a la costa, topografía y corrientes del viento definen la distribución del cloruro. La única desviación principal de este esquema tiene lugar al norte de Utah y en el sur de Idaho, donde se deduce que existe una fuente continental de cloruro en los Rellanos Salados de Bonneville (Salt Flats).

En contraste con estudios previos (Knies et al. 1994; Phillips 2000), se ha descubierto que el flujo atmosférico de 36Cl hacia la superficie terrestre es aproximadamente constante en todos los estados, sin deducirse una correlación fuerte entre el aporte de 36Cl y la precipitación anual. Sin embargo, la correlación entre estas variables se ve mejorada de forma significativa, con coeficientes de regresión comprendidos entre 0,15 y 0,55, cuando se excluyen los datos recogidos en el sudeste de los EUA, que tienen concentraciones de 36Cl atmosférico presuntamente inferiores a la media. El flujo medio total de 36Cl calculado en la zona continental de los Estados Unidos vale 30,5±7,0 átomos por metro cuadrado y segundo, mientras que el flujo total global de 36Cl es de 19,6±4,5 átomos por metro cuadrado y segundo.

La distribución de 36Cl/Cl calculada por Bentley et al. (1986) infravalora la magnitud y variabilidad observada en los valores medidos a lo largo de los Estados Unidos. El modelo propuesto por Hainsworth (1994) proporciona el mejor ajuste conjunto a la distribución observada de 36Cl/Cl en este estudio. El modelo orientado a procesos de Phillips (2000) sobreestima por lo general la distribución de 36Cl/Cl en la mayoría del país y difiere significativamente de algunos valores locales empíricos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Andrews JN, Edmunds WM, Smedley PL, Fontes J-C, Fifield LK, Allan GL (1994) Chlorine-36 in groundwater as a palaeoclimatic indicator: the East Midlands Triassic sandstone aquifer (UK). Earth Planet Sci Lett 122:159–171

    Article  CAS  Google Scholar 

  • Barry RG, Chorley RJ (1992) Atmosphere, weather and climate. Routledge, New York, 392 pp

  • Beasley TM, Elmore D, Kubik PW, Sharma P (1992) Chlorine-36 releases from the Savannah River site nuclear fuel reprocessing facilities. Ground Water 30(4):539–548

    CAS  Google Scholar 

  • Beasley TM, Cecil LD, Sharma P, Kubik PW, Fehn U, Mann LJ, Gove HE (1993) Chlorine-36 in the Snake River Plain aquifer at the Idaho National Engineering Laboratory: origin and Implications. Ground Water 31(2):302–310

    CAS  Google Scholar 

  • Bentley HW, Phillips FM, Davis SN (1986) Chlorine-36 in the terrestrial environment. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, vol 2, ch 10. Elsevier, Amsterdam, pp 427–480

  • Blinov A (1988) The dependence of cosmogenic isotope production rate on solar activity and geomagnetic field variations. In: Stephenson FR, Wolfendale AW (eds) Secular solar and geomagnetic variations in the last 10,000 years, Proceedings of the NATO Advanced Research Workshop (1987). Kluwer Academic, New York

  • Cecil LD, Vogt S (1997) Identification of bomb-produced 36Cl in mid-latitude glacial ice of North America. Nucl Instrum Methods Phys Res B123:287–289

    Google Scholar 

  • Cecil LD, Pittman JR, Beasley TM, Michel RL, Kubik PW, Sharma P, Fehn U, Gove HE (1992) Water infiltration rates in the unsaturated zone at the Idaho National Engineering Laboratory estimated from chlorine-36 and tritium profiles, and neutron logging. In: Kharaka YK, Maest AS (eds) Water–rock interaction. Balkema, Rotterdam, pp 709–714

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, 328 pp

  • Davis SN, Cecil LD, Zreda M, Sharma P (1998) Chlorine-36 and the initial value problem. Hydrogeol J 6(1):104–114

    Article  Google Scholar 

  • Davis SN, Fabryka-Martin J, Wolfsberg L, Moysey S, Shaver R, Alexander C Jr, Krothe N (2000) Chlorine-36 in ground water containing low chloride concentrations. Ground Water 38(6):912–921

    CAS  Google Scholar 

  • Davis SN, Moysey S, Cecil LD, Zreda M (2003) Chlorine-36 in groundwater of the United States: empirical data. Hydrogeol J 11(2):217–227

    CAS  Google Scholar 

  • Davidson CI (1989) Mechanisms of wet and dry deposition of atmospheric contaminants to snow surfaces. In: Oeschger H, Langway CC Jr (eds) The environmental record in glaciers and ice sheets. Wiley, Toronto, pp 29–51

  • Eriksson E (1960) The yearly circulation of chloride and sulfur in nature; meteorological, geochemical and pedological implications, part II. Tellus 12:63–109

    Google Scholar 

  • Fabryka-Martin J, Davis SN, Elmore D (1987) Applications of 129I and 36Cl in hydrology. Nucl Instrum Methods Phys Res B29:361–371

    CAS  Google Scholar 

  • Finkel RC, Nishiizumi K, Elmore D, Ferraro RD, Gove HE (1980) 36Cl in polar ice, rainwater and seawater. Geophys Res Lett 7:983–986

    CAS  Google Scholar 

  • Hainsworth L (1994) Spatial and temporal variations in chlorine-36 deposition in the northern United States. PhD Thesis, University of Maryland, USA, 215 pp

  • Hainsworth LJ, Mignerey AC, Helz GR, Sharma P, Kubik PW (1994) Modern chlorine-36 deposition in southern Maryland, USA. Nucl Instrum Methods Phys Res B92:345–349

    Google Scholar 

  • Huggle D, Blinov A, Stan-Sion C, Korschinek G, Scheffel C, Massonet S, Zerle L, Beer J, Parrat Y, Gaeggeler H, Hajdas W, Nolte E (1996) Production of cosmogenic 36Cl on atmospheric argon. Planet Space Sci 44:147–151

    Article  CAS  Google Scholar 

  • Jiang SS, Hemmick TK, Kubik PW, Elmore D, Gove HE, Tullai-Fitzpatrick S, Hossain TZ (1990) Measurement of the 36Ar (n,p)36Cl cross section at thermal energies using the AMS technique. Nucl Instrum Methods Phys Res B52:608–611

    CAS  Google Scholar 

  • Keywood MD, Fifield LK, Chivas AR, Cresswell RG (1998) Fallout of chlorine-36 to the Earth’s surface in the southern hemisphere. J Geophys Res 103(D7):8281–8286

    CAS  Google Scholar 

  • Knies DL, Elmore D, Sharma P, Vogt S, Li R, Lipschutz ME, Petty G, Ferrell J, Monaghan MC, Fritz S, Agee E (1994) Be-7, Be-10, and Cl-36 in precipitation. Nucl Instrum Methods Phys Res B92:340–344

    Google Scholar 

  • Lal D, Peters B (1967) Cosmic ray produced radioactivity on the Earth. Handbuch der Physik, vol 46. Springer, Berlin Heidelberg New York, pp 551–612

  • Lehmann BE, Davis SN, Fabryka-Martin JT (1993), Atmospheric and subsurface sources of stable and radioactive nuclides used for groundwater dating. Water Resour Res 29:2027–2040

    CAS  Google Scholar 

  • Li Y-H (1992) Seasalt and pollution inputs over the continental United States. Water Air Soil Pollut 64:561–573

    CAS  Google Scholar 

  • Linsley RK Jr, Kohler MA, Paulhus JLH (1975) Hydrogeology for engineers. McGraw-Hill, New York, 88 pp

  • Lopes TJ, Hoffmann JP (1997) Geochemical analyses of ground-water ages, recharge rates, and hydraulic conductivity of the N Aquifer, Black Mesa Area, Arizona. US Geol Survey Water-Resources Investigations Report 96-4190, 42 pp

  • Masarik J, Beer J (1999) Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J Geophys Res D104(D10):12099–12111

    Google Scholar 

  • Moysey S (1999) Meteoric 36Cl in the contiguous United States. MSc Thesis, University of Arizona, Tucson, Arizona, USA, 163 pp

  • National Atmospheric Deposition Program (NADP)/National Trends Network (2000) NADP Program Office, Illinois State Water Survey, 2204 Griffith Dr., Champaign, IL 61820

  • Nishiizumi K, Arnold JR, Elmore D, Ferraro RD, Gove HE, Finkel RC, Beukens RP, Chang KH, Kilus LR (1979) Measurements of 36Cl in Antarctic meteorites and Antarctic ice using a Van De Graaff accelerator. Earth Planet Sci Lett 45:285–292

    Article  CAS  Google Scholar 

  • Nishiizumi K, Arnold JR, Elmore D, Ma X, Newman D, Gove HE (1983) 36Cl and 53Mn in Antarctic meteorites and 10Be-36Cl dating of Antarctic ice. Earth Planet Sci Lett 62:407–417

    Article  CAS  Google Scholar 

  • Norris AE, Wolfsberg W, Gifford SK, Bentley HW, Elmore D (1987) Infiltration at Yucca Mountain, Nevada, traced by Cl-36. Nucl Instrum Methods Phys Res B29:376–379

    CAS  Google Scholar 

  • Oeschger H, Houtermans J, Loosli H, Wahlen M (1969) The constancy of radiation from isotope studies in meteorites and on the Earth. In: Olssun IU (ed) Radiocarbon variations and absolute chronology, 12th Nobel Symposium, Wiley-Interscience, New York, pp 471–496

  • Phillips FM (2000) Chlorine-36. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic, Boston, pp 299–348

  • Phillips F, Mattick J, Duval T, Elmore D, Kubik P (1988) Chlorine 36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapour movement in desert soils. Water Resour Res 24:1877–1891

    CAS  Google Scholar 

  • Phillips FM, Rogers DB, Dreiss SJ, Jannik NO, Elmore D (1995) Chlorine 36 in Great Basin waters: revisited. Water Resour Res 31:3195–3204

    CAS  Google Scholar 

  • Plummer MA, Phillips FM, Fabryka-Martin J, Turin HJ, Wigand PE, Sharma P (1997) Chlorine-36 in fossil rat urine: an archive of cosmogenic nuclide deposition during the past 40,000 years. Science 277:538–540

    CAS  PubMed  Google Scholar 

  • Purdy CB, Mignerey AC, Helz GR, Drummond DD, Kubik PW, Elmore D, Hemmick T (1987) Cl-36: A tracer in groundwater in the Aquia Formation of southern Maryland. Nucl Instrum Methods Phys Res B29:372–375

    CAS  Google Scholar 

  • Reiter E (1975) Stratospheric–tropospheric exchange processes. Rev Geophys Space Phys 13:459–474

    Google Scholar 

  • Scanlon BR, Kubik PW, Sharma P, Richter BC, Gove HE (1990) Bomb chlorine-36 analysis in the characterization of unsaturated flow at a proposed radioactive waste disposal facility, Chihuahuan Desert, Texas. Nucl Instrum Methods Phys Res B52:489–492

    CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley, Toronto, 1326 pp

  • Semonin RG, Bowersox VC (1982) Characterization of the inorganic chemistry of the precipitation of North America. In: Pruppacher HR, Semonin RG, Slinn WGN (eds) Precipitation scavenging, dry deposition, and resuspension, vol 2: dry deposition and resuspension. Elsevier, Santa Monica, Calif., pp 191–200

  • Simpson HJ, Herczeg AL (1994) Delivery of marine chloride in precipitation and removal by rivers in the Murray-Darling Basin, Australia. J Hydrol 154:323–350

    Article  Google Scholar 

  • Slinn WGN, Radke LF, Katen PC (1982) Inland transport, mixing and dry deposition of sea-salt particles. In: Pruppacher HR, Semonin RG, Slinn WGN (eds) Precipitation scavenging, dry deposition and resuspension, vol 1: precipitation scavenging, Elsevier, Santa Monica, Calif., pp 1037–1046

  • Sterling JM (2000) Spatial distribution of chloride and 36Cl deposition in the coterminous United States. MSc Thesis, New Mexico Institute of Mining and Technology, USA, 155 pp

  • Taylor JR (1982) An introduction to error analysis. University Science Books, Mill Valley, CA, USA, 270 pp

  • Vogt S, Elmore D, Fritz SJ (1994) Cl-36 in shallow, perched aquifers from central Indiana. Nucl Instrum Methods Phys Res B92:398–403

    Google Scholar 

  • Vourvopoulos G, Brahana JV, Nolte E, Korschinek G, Priller A, Dockhorn B (1990) 36Cl measurements and the hydrology of an acid injection site. Nucl Instrum Methods Phys Res B52:451–454

    CAS  Google Scholar 

  • Wood WW, Sanford WE (1995) Eolian transport, saline lake basins, and groundwater solutes. Water Resour Res 31(12):3121–3129

    Google Scholar 

Download references

Acknowledgments

This work was funded by the National Science Foundation (Grant EAR9526881) and is the product of the cooperation of more than 20 individuals from private, academic, municipal, state, and federal organizations. Many of these individuals also kindly provided chemical and geologic information on the regional and local systems that were sampled. Others spent many hours in the field with us. All 36Cl analyses were conducted under the direction of Pankaj Sharma of PRIME Lab, Purdue University. Augusta Davis assisted with the collection of most of the water samples. Nadia Moysey and Timothy Shanahan made significant contributions in the preparation of samples for 36Cl/Cl measurement. The discussion and analysis in this paper were significantly improved by the thorough and insightful reviews given by Dr. F.M. Phillips and Dr. B.E. Lehmann. We are deeply grateful to all of them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Moysey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moysey, S., Davis, S.N., Zreda, M. et al. The distribution of meteoric 36Cl/Cl in the United States: a comparison of models. Hydrogeology Journal 11, 615–627 (2003). https://doi.org/10.1007/s10040-003-0287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-003-0287-z

Keywords

Navigation