Skip to main content
Log in

Heterogeneous response of hydrogeological systems to the Izmit and Düzce (Turkey) earthquakes of 1999

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

At four sites in Turkey and Armenia the physico-chemical properties of thermal and mineral waters were monitored continuously during the Izmit and Düzce earthquakes that occurred along the North Anatolian fault in August and November 1999. The epicentral distances between the moment magnitude (Mw) 7.6 Izmit earthquake and the monitoring locations were 313, 488, 1,161, and 1,395 km. At the most distant site, the specific electrical conductivity of mineral water from a flowing artesian well dropped co-seismically and postseismically by 7%. No changes were observed at the other sites, although the estimated earthquake strains and peak ground accelerations are much higher. A similar pattern was observed after the Düzce earthquake, which happened three months after the Izmit event. The response of a hydrogeological system seems to depend on the site characteristics rather than on the nature of the earthquake. A hydrogeological model for the sensitive observation site farthest from the Izmit earthquake explains the observations in terms of a changed mixing ratio between two fluid components. Passing seismic waves may trigger a local pore-pressure increase according to the mechanism of advective overpressure. The preconditions for this mechanism, free gas bubbles in the aquifer in combination with a trap for rising bubbles, is probably not fulfilled by the other groundwater systems.

Résumé

Les caractéristiques physico-chimiques d'eaux thermo-minérales de quatre sites de Turquie et d'Arménie ont été suivies en continu au cours des séismes d'Izmit et de Düzce, qui se sont produits le long de la faille nord-anatolienne en août et novembre 1999. Les distances à l'épicentre entre le séisme d'Izmit de magnitude (Mw) 7,6 et les sites suivis étaient de 313, 488, 1.161, et 1.395 km. Pour le site le plus éloigné, la conductivité électrique spécifique d'une eau minérale provenant d'un puits artésien jaillissant a baissé de 7% à la suite du séisme. Aucun changement n'a été observé aux autres sites, bien que les contraintes estimées du séisme et les accélérations du sol au moment du pic aient été plus importantes. Les mêmes effets ont été observés à la suite du séisme de Düzce, qui s'est produit 3 mois après celui d'Izmit. La réponse du système hydrogéologique paraît dépendre des caractéristiques du site plutôt que de la nature du séisme. Un modèle hydrogéologique pour le site d'observation sensible le plus éloigné du séisme d'Izmit explique les observations par un changement du rapport de mélange entre deux composantes du fluide. Les ondes sismiques qui circulent peuvent produire par détente une augmentation locale de la pression porale, conformément au mécanisme de surpression advective. Les conditions requises pour ce mécanisme, des bulles de gaz libre dans l'aquifère avec un piège pour les bulles libérées, ne sont probablement pas réunies dans les autres aquifères.

Resumen

Se ha controlado en continuo las propiedades físico-químicas de aguas termales y minerales en cuatro emplazamientos de Turquía y Armenia durante los terremotos de Izmit y Düzce, que tuvieron lugar a lo largo de la falla Norte de la Anatolia en agosto y noviembre de 1999. La distancia entre el epicentro del terremoto de Izmit, que tuvo un momento angular (Mw) de 7,6, y los puntos de registro eran de 313, 488, 1.161, y 1.395 km. En este último, la conductividad eléctrica específica de un agua mineral captada en un pozo artesiano descendió durante y después del seísmo en un porcentaje del 7%. No se observó cambio alguno en los otros puntos, aunque las deformaciones estimadas del terremoto y las aceleraciones máximas del terreno son mucho mayores. Algo similar sucedió tras el terremoto de Düzce, 3 meses después del de Izmit. La respuesta de un sistema hidrogeológico parece depender de las características del emplazamiento más que de la naturaleza del terremoto. Un modelo hidrogeológico para el punto sensible más alejado del epicentro del terremoto de Izmit explica las observaciones en términos del cambio producido en la relación de mezcla de dos fluidos componentes. Las ondas sísmicas pueden iniciar un cambio de la presión de poro a escala local, de acuerdo con el mecanismo de sobrepresión advectiva. Las condiciones necesarias para dicho mecanismo—existencia de burbujas de gas libres en el acuífero y de una trampa para las burbujas que ascienden—probablemente no se cumplían en los sistemas hidrogeológicos restantes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Balassanian S (1999) The anomalous daily dynamics of local geophysical and geochemical fields (ADF) effect study in the connection with earthquake preparation and occurrence. In: Rokityansky (ed) Spontaneous globally synchronized variations of physical parameters. Physics and chemistry of the earth. Part A: solid earth and geodesy. Elsevier, Oxford, pp 741–752

    Google Scholar 

  • Boore DM, Joyner WB (1982) The empirical prediction of ground motion. Bull Seismol Soc Am 72(6):S43–S60

    Google Scholar 

  • Brodsky EE, Roeloffs E, Woodcock D, Gall I, Manga M (2001) A new mechanism for pore pressure changes induced by distant earthquakes. In: Proc 2001 AGU Fall Meeting, San Francisco, pp S12F-04

  • Drever JD (1982) The geochemistry of natural waters. Prentice Hall, Englewood Cliffs, 388 pp

  • Dziewonski AM, Ekstrom G, Maternovskaya NN (2000a) Centroid-moment tensor solutions for July–September 1999. Phys Earth Planet Inter 119(3–4):311–319

  • Dziewonski AM, Ekstrom G, Maternovskaya NN (2000b) Centroid-moment tensor solutions for October–December, 1999. Phys Earth Planet Inter 121(3–4):205–221

  • Giggenbach WF, Sano Y, Schmincke HU (1991) CO2-rich gases from Lakes Nyos and Monoun, Cameroon; Laacher See, Germany; Dieng, Indonesia; and Mt. Gambier, Australia—variations on a common theme. J Volcanol Geotherm Res 45(3–4):311–323

  • Igarashi G, Wakita H (1991) Tidal responses and earthquake-related changes in the water level of deep wells. J Geophys Res 96(B3):4269–4278

    Google Scholar 

  • Igarashi G, Tohjima Y, Wakita H (1993) Time-variable response characteristics of groundwater radon to earthquakes. Geophys Res Lett 20(17):1807–1810

    CAS  Google Scholar 

  • Kharaka YK, Gunter WD, Aggarwal PK, Perkins EH, DeBraal JD (1988) Solmineq.88: a computer program for geochemical modeling of water–rock interactions. Rep 88–4227. US Geological Survey, Washington, DC

  • King CY, Azuma S, Igarashi G, Ohno M, Saito H, Wakita H (1999) Earthquake-related water-level changes at 16 closely clustered wells in Tono, central Japan. J Geophys Res B Solid Earth Planets 104(6):13,073–13,082

    Google Scholar 

  • Kitagawa Y, Koizumi N, Tsukuda T (1996) Comparison of postseismic groundwater temperature changes with earthquake-induced volumetric strain release; Yudani hot spring, Japan. Geophys Res Lett 23(22):3147–3150

    Google Scholar 

  • Langelier W, Ludwig H (1942) Graphical methods for indicating the mineral character of natural waters. J Am Water Assoc 34:335–352

    CAS  Google Scholar 

  • Nakamura Y, Wakita H (1984) Precise temperature measurement of groundwater for earthquake-prediction study. Pure Appl Geophys 122(2–4):164–174

  • Nicholson K (1993) Geothermal fluids. Springer, Berlin Heidelberg New York, 263 pp

  • Ohno M, Wakita H, Kanjo K (1997) A water well sensitive to seismic waves. Geophys Res Lett 24(6):691–694

    Google Scholar 

  • O'Neil JR, Chi-Yu K (1981) Variations in stable-isotope ratios of ground waters in seismically active regions of California. Geophys Res Lett 8(5):429–432

    CAS  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User's guide to PHREEQC (version 2). US Geol Surv Water Resourc Inv Rep 99–4259. US Geological Survey, Washington, DC

  • Roeloffs EA (1998) Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J Geophys Res 103(B1):869–889

    Google Scholar 

  • Roeloffs EA, Danskin WR, Farrar CD, Galloway DL, Hamlin SN, Quilty EG, Quinn HM, Schaefer DH, Sorey ML, Woodcock DE (1995) Hydrologic effects associated with the June 28, 1992 Landers, California, earthquake sequence. US Geol Surv Open-File Rep 95-42:68

  • Rudnicki JW, Yin J, Roeloffs EA (1993) Analysis of water level changes induced by fault creep at Parkfield, California. J Geophys Res 98(B5):8143–8152

    Google Scholar 

  • Sahagian DL (1993) More bubbles in volcanic systems. Nature 361:308

    Google Scholar 

  • Sahagian DL, Proussevitch AA (1992) Bubbles in volcanic systems. Nature 359:485

    PubMed  Google Scholar 

  • Silver PG, Wakita H (1996) A search for earthquake precursors. Science 273(5271):77–78

    CAS  Google Scholar 

  • Steinberg GS, Steinberg AS, Merzhanov AG (1989a) Fluid mechanism of pressure growth and the seismic regime of volcanoes prior to eruption. Mod Geol 13(3–4):267–274

  • Steinberg GS, Steinberg AS, Merzhanov AG (1989b) Fluid mechanism of pressure growth in volcanic (magmatic) systems. Mod Geol 13(3–4):257–265

  • Steinberg GS, Steinberg AS, Merzhanov AG (1989c) Fluid mechanism of pressure rise in volcanic (magmatic) systems with mass exchange. Mod Geol 13(3–4):275–281

  • Takahashi H, Tsuneishi Y (1978) Variations in chemical composition of thermal water before and after the 1978 Izu-Oshima-Kinkai earthquake, at Tokunaga-Minami and Tsukigase in the Izu Peninsula. Bull Earthquake Res Inst Univ Tokyo 53(3):987–994

    CAS  Google Scholar 

  • Tibi R, Bock G, Xia Y, Baumbach M, Grosser H, Milkereit C, Karakisa S, Zunbul S, Kind R, Zschau J (2001) Rupture processes of the 1999 August 17 Izmit and November 12 Düzce (Turkey) earthquakes. Geophys J Int 144(2):F1–F7

    Article  Google Scholar 

  • Toksöz MN, Reilinger RE, Doll CG, Barka AA, Yalcin N (1999) Izmit (Turkey) earthquake of 17 August 1999: first report. Seismol Res Lett 70(6):669–679

    Google Scholar 

  • Wakita H, Igarashi G, Nakamura Y, Sano Y, Notsu K (1989) Coseismic radon changes in groundwater. Geophys Res Lett 16(5):417–420

    CAS  Google Scholar 

  • Wang R (1999) A simple orthonormalization method for the stable and efficient computation of Green's functions. Bull Seismol Soc Am 89:733–741

    Google Scholar 

  • Woith H, Milkereit C, Zschau J, Maiwald U, Pekdeger A (1998) Monitoring of thermal and mineral waters in the frame of READINESS. In: Arehard GB, Hulston JR (eds) Water–rock interaction. AA Balkema, Rotterdam, pp 809–812

  • Woith H, Wang R, Milkereit C, Zschau J, Maiwald U, Pekdeger A (2001) Response of an artesian well in southern Armenia to the 1400 km distant Izmit earthquake of August 17, 1999. In: Cidu R (ed) Water–rock interaction. AA Balkema, Rotterdam, pp 115–118

Download references

Acknowledgements

Within the framework of the READINESS project this work was financially supported by the Ministry of Disaster Affairs, Ankara, Turkey; the National Survey for Seismic Protection (NSSP), Yerevan, Armenia; and the GeoForschungsZentrum, Potsdam, Germany. Many thanks are due to the technical staff of these institutions. We thank Juliane Heiland and William Z. Savage for their critical reviews and for suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Woith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woith, H., Wang, R., Milkereit, C. et al. Heterogeneous response of hydrogeological systems to the Izmit and Düzce (Turkey) earthquakes of 1999. Hydrogeology Journal 11, 113–121 (2003). https://doi.org/10.1007/s10040-002-0244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-002-0244-2

Keywords

Navigation