Skip to main content
Log in

Resorbierbare Kalziumphosphatzemente

Resorbable calcium phosphate cements

  • Leitthema
  • Published:
Trauma und Berufskrankheit

Zusammenfassung

Knochenersatzmaterialien haben in den letzten Jahren einen festen Platz im klinischen Alltag des Orthopäden und Unfallchirurgen eingenommen. Für die knöcherne Defektbehandlung vor allem bei älteren osteoporotischen Patienten sind die verfügbaren Substanzen sehr hilfreich. Das langfristig größte Entwicklungspotential wird augenblicklich den resorbierbaren Materialien zugeschrieben. Hier sind es vor allem die resorbierbaren Kalziumphosphatzemente, die im derzeitigen Mittelpunkt des klinisch/experimentellen Interesses stehen. Durch ihre Viskosität können mit den Zementen Defekte unterschiedlicher Form und Größe vollständig aufgefüllt werden. Die minimal invasive Applikation über Stichinzisionen unter radiologischer Kontrolle ist möglich, wodurch die Zugangsmorbidität in vielen Fällen in denen die Behandlung eines knöchernen Defektes notwendig ist reduziert werden kann. Die Kombination mit einer stabilen Osteosynthese ist jedoch häufig erforderlich. Die Substanzen werden vollständig in das biologische Konstrukt Knochen integriert und sind dem physiologischen Remodelingprozeß unterworfen, d. h. die Materialien werden durch Osteoklasten resorbiert und durch neuen Knochen ersetzt. Diese Eigenschaft der Kalziumphosphatzemente ermöglicht es, das eigentliche Knochenersatzmaterial mit Medikamenten und/oder Wachstumsfaktoren zu vermischen und eine kontrollierte Freisetzung der Substanzen aus dem System zu erreichen. Zu berücksichtigen ist hierbei, dass die Resorption der kalziumhaltigen Zemente abhängig ist von ihrem Implantationsort (anatomische Lokalisation) und praktisch nie vollständig geschieht. In wie weit auch diaphysäre Defekt mit Hilfe von Kalziumphosphatzementen sicher überbrückt werden können müssen weitere experimentelle Untersuchungen belegen. Die biologische Wertigkeit im Vergleich zu autogenem Knochen kann nur durch—noch immer fehlende—kontrollierte klinische Studien bestimmt werden.

Abstract

In the last years bone substitute materials have taken up their definite place in clinical practice for orthopaedic and trauma surgeons. For the treatment of bony defects especially in older patients with severe osteoporosis the available substances are quite helpful. The biggest long-term development potential is currently imputed to the resorbable materials. In particular the resorbable calcium phosphate cements are in the middle of clinical and experimental interests. Due to their viscosity these cements are able to fill defects with variable forms and sizes. The minimal invasive application through slightest incisions is possible under radiological control whereby the morbidity of the approach can be reduced in most cases where treatment of bony defects is indicated. The combination with a stable osteosynthesis is frequently required. These substances are fully integrated in the biological construct which contains the physiologic remodelling process. That means these materials can be resorbed by osteoclasts and get replaced by new bone. This quality of calcium phosphate cements makes it possible that rather bone substitute materials can be mixed up with drugs or growth factors to achieve a controlled release of the substances. It has to be considered that the resorption of the cements containing calcium is dispensable from the place of implantation (anatomic location) and practically never appears to be complete. How diaphyseal defects can also be treated with calcium phosphate cements needs to be shown by further experimental trials. The biological valence compared to autogenous bone can only be determined with further controlled clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Alexander H, Brunski J, Cooper S et al. (1996) Classes of materials used in medicine. In: Ratner BD, Hoffman AS, Schoen FJ et al. (eds) Biomaterial science. An introduction to materials in medicine. Academic Press, San Diego, pp 37–130

  2. Bai B, Jazrawi LM, Kummer FJ et al. (1999) The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine 24: 1521–1526

    Article  CAS  PubMed  Google Scholar 

  3. Berlemann U, Heini PF (2002) Perkutane Zementierungstechniken zur Behandlung osteoporotischer Wirbelkörpersinterungen. Unfallchirurg 105: 2–8

    Article  CAS  PubMed  Google Scholar 

  4. Blattert TR, Delling G, Weckbach A (2003) Evaluation of an injectable calcium phosphate cement as an autograft substitute for transpedicular lumbar interbody fusion: a controlled, prospective study in the sheep model. Eur Spine J 12: 216–223

    CAS  PubMed  Google Scholar 

  5. Bloemers FW, Blokhuis TJ, Patka P et al. (2003) Autologous bone versus calcium-phosphate ceramics in treatment of experimental bone defects. J Biomed Mater Res 66B: 526–531

    Article  CAS  PubMed  Google Scholar 

  6. Blom EJ, Klein-Nulend J, Wolke JG et al. (2002) Transforming growth factor-beta1 incorporation in an alpha-tricalcium phosphate/dicalcium phosphate dihydrate/tetracalcium phosphate monoxide cement: release characteristics and physicochemical properties. Biomaterials 23: 1261–1268

    Article  CAS  PubMed  Google Scholar 

  7. Bohner M (2001) Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J [Suppl 2] 10: S114–S121

    Google Scholar 

  8. Bohner M, Lemaitre J, Van Landuyt P et al. (1997) Gentamicin-loaded hydraulic calcium phosphate bone cement as antibiotic delivery system. J Pharm Sci 86: 565–572

    Article  CAS  PubMed  Google Scholar 

  9. Cassidy C, Jupiter JB, Cohen M et al. (2003) Norian SRS cement compared with conventional fixation in distal radial fractures. A randomized study. J Bone Joint Surg Am 85-A: 2127–2137

  10. Constantz BR, Ison IC, Fulmer MT et al. (1995) Skeletal repair by in situ formation of the mineral phase of bone. Science 267: 1796–1799

    CAS  PubMed  Google Scholar 

  11. Cornell CN (1999) Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop Clin North Am 30: 591–598

    CAS  PubMed  Google Scholar 

  12. Engel T, Lill H, Korner J et al. (2003) Tibiakopfplateaufrakturen—Erste Erfahrungen mit einem resorbierbaren Knochenzement zur Augmentation. Unfallchirurg 106: 97–101

    Article  CAS  PubMed  Google Scholar 

  13. Frankenburg EP, Goldstein SA, Bauer TW et al. (1998) Biomechanical and histological evaluation of a calcium phosphate cement. J Bone Joint Surg Am 80: 1112–1124

    CAS  PubMed  Google Scholar 

  14. Frayssinet P, Gineste L, Conte P et al. (1998) Short-term implantation effects of a DCPD-based calcium phosphate cement. Biomaterials 19: 971–977

    Article  CAS  PubMed  Google Scholar 

  15. Hamanishi C, Kitamoto K, Tanaka S et al. (1996) A self-setting TTCP-DCPD apatite cement for release of vancomycin. J Biomed Mater Res 33: 139–143

    Article  CAS  PubMed  Google Scholar 

  16. Hillmeier J, Meeder PJ, Noldge G et al. (2004) Augmentation von Wirbelkörperfrakturen mit einem neuen Calciumphosphat-Zement nach Ballon-Kyphoplastie. Orthopade 33: 31–39

    CAS  PubMed  Google Scholar 

  17. Horstmann WG, Verheyen CC, Leemans R (2003) An injectable calcium phosphate cement as a bone-graft substitute in the treatment of displaced lateral tibial plateau fractures. Injury 34: 141–144

    Article  CAS  PubMed  Google Scholar 

  18. Kamano M, Honda Y, Kazuki K et al. (2003) Palmar plating with calcium phosphate bone cement for unstable Colles‘ fractures. Clin Orthop 416: 285–290

    Article  PubMed  Google Scholar 

  19. Keating JF, Hajducka CL, Harper J (2003) Minimal internal fixation and calcium-phosphate cement in the treatment of fractures of the tibial plateau. A pilot study. J Bone Joint Surg Br 85: 68–73

    Article  CAS  PubMed  Google Scholar 

  20. Knaack D, Goad ME, Aiolova M et al. (1998) Resorbable calcium phosphate bone substitute. J Biomed Mater Res 43: 399–409

    Article  CAS  PubMed  Google Scholar 

  21. Kopylov P, Jonsson K, Thorngren KG et al. (1996) Injectable calcium phosphate in the treatment of distal radial fractures. J Hand Surg [Br] 21: 768–771

    Google Scholar 

  22. Kopylov P, Runnqvist K, Jonsson K et al. (1999) Norian SRS versus external fixation in redisplaced distal radial fractures. A randomized study in 40 patients. Acta Orthop Scand 70: 1–5

    CAS  PubMed  Google Scholar 

  23. Lee DD, Tofighi A, Aiolova M et al. (1999) alpha-BSM: a biomimetic bone substitute and drug delivery vehicle. Clin Orthop Suppl 367: S396–S405

    Article  Google Scholar 

  24. Linhart W, Briem D (2001) Knochenersatz 2000 bis 2010. Standortbestimmung und Innovation in der Therapie von Knochendefekten. Orthopade 30: 189–192

    CAS  PubMed  Google Scholar 

  25. Linhart W, Meenen NM, Rueger JM (2000) Knochenersatzmaterialien: Neue Möglichkeiten und Techniken. OP J 16: 294–300

    Google Scholar 

  26. Linhart W, Peters F, Lehmann W et al. (2001) Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res 54: 162–171

    Article  CAS  PubMed  Google Scholar 

  27. Linhart W, Briem D, Schmitz ND et al. (2003) Therapie des metaphysären Substanzdefektes nach distaler Radiusfraktur. Mittelfristige Ergebnisse mit einem Kalziumphosphatzement (BIOBON). Unfallchirurg 106: 618–624

    Article  CAS  PubMed  Google Scholar 

  28. Lobenhoffer P, Gerich T, Witte F et al. (2002) Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: a prospective study of twenty-six cases with twenty-month mean follow-up. J Orthop Trauma 16: 143–149

    Article  CAS  PubMed  Google Scholar 

  29. Mattsson P, Larsson S (2003) Stability of internally fixed femoral neck fractures augmented with resorbable cement. A prospective randomized study using radiostereometry. Scand J Surg 92: 215–219

    CAS  PubMed  Google Scholar 

  30. Mickiewicz RA, Mayes AM, Knaack D (2002) Polymer-calcium phosphate cement composites for bone substitutes. J Biomed Mater Res 61: 581–592

    Article  CAS  PubMed  Google Scholar 

  31. Muenzenberg KJ, Gebhardt M (1973) Brushite octacalcium phosphate, and carbonate-containing apatite in bone. Clin Orthop 90: 271–273

    CAS  PubMed  Google Scholar 

  32. Nade S, Armstrong L, McCartney E et al. (1983) Osteogenesis after bone and bone marrow transplantation. The ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells: preliminary studies. Clin Orthop 181: 255–263

    PubMed  Google Scholar 

  33. Posner AS (1985) The mineral of bone. Clin Orthop 200: 87–99

    CAS  PubMed  Google Scholar 

  34. Predecki P, Stephan JE, Auslaender BA et al. (1972) Kinetics of bone growth into cylindrical channels in aluminum oxide and titanium. J Biomed Mater Res 6: 375–400

    CAS  PubMed  Google Scholar 

  35. Ratier A, Gibson IR, Best SM et al. (2001) Setting characteristics and mechanical behaviour of a calcium phosphate bone cement containing tetracycline. Biomaterials 22: 897–901

    Article  CAS  PubMed  Google Scholar 

  36. Ruhe PQ, Hedberg EL, Padron NT et al. (2003) rhBMP-2 release from injectable poly(DL-lactic-co-glycolic acid)/calcium-phosphate cement composites. J Bone Joint Surg Am [Suppl 3] 85-A: 75–81

  37. Ruhe PQ, Kroese-Deutman HC, Wolke JG et al. (2004) Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials 25: 2123–2132

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez-Sotelo J, Munuera L, Madero R (2000) Treatment of fractures of the distal radius with a remodellable bone cement: a prospective, randomised study using Norian SRS. J Bone Joint Surg Br 82: 856–863

    Article  CAS  PubMed  Google Scholar 

  39. Sarkar MR, Wachter N, Patka P et al. (2001) First histological observations on the incorporation of a novel calcium phosphate bone substitute material in human cancellous bone. J Biomed Mater Res 58: 329–334

    Article  CAS  PubMed  Google Scholar 

  40. Sasaki S, Ishii Y (1999) Apatite cement containing antibiotics: efficacy in treating experimental osteomyelitis. J Orthop Sci 4: 361–369

    Article  CAS  PubMed  Google Scholar 

  41. Schildhauer TA, Bauer TW, Josten C et al. (2000) Open reduction and augmentation of internal fixation with an injectable skeletal cement for the treatment of complex calcaneal fractures. J Orthop Trauma 14: 309–317

    Article  CAS  PubMed  Google Scholar 

  42. Schilling AF, Linhart W, Filke S et al. (2004) Resorbability of bone substitute biomaterials by human osteoclasts. Biomaterials 25: 3963–3972

    Article  CAS  PubMed  Google Scholar 

  43. Schmitz JP, Hollinger JO, Milam SB (1999) Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg 57: 1122–1126

    Article  CAS  PubMed  Google Scholar 

  44. Simpson D, Keating JF (2004) Outcome of tibial plateau fractures managed with calcium phosphate cement. Injury 35: 913–918

    Article  CAS  PubMed  Google Scholar 

  45. Tahara Y, Ishii Y (2001) Apatite cement containing cis-diaminedichloroplatinum implanted in rabbit femur for sustained release of the anticancer drug and bone formation. J Orthop Sci 6: 556–565

    Article  CAS  PubMed  Google Scholar 

  46. Takechi M, Miyamoto Y, Ishikawa K et al. (1998) Effects of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement. J Biomed Mater Res 39: 308–316

    Article  CAS  PubMed  Google Scholar 

  47. Tay BK, Patel VV, Bradford DS (1999) Calcium sulfate- and calcium phosphate-based bone substitutes. Mimicry of the mineral phase of bone. Orthop Clin North Am 30: 615–623

    CAS  PubMed  Google Scholar 

  48. Tyllianakis M, Giannikas D, Panagopoulos A et al. (2002) Use of injectable calcium phosphate in the treatment of intra-articular distal radius fractures. Orthopedics 25: 311–315

    PubMed  Google Scholar 

  49. Wintermantel E, Ha SW (2002) Medizintechnik mit biokompatiblen Werkstoffen und Verfahren, 3. Aufl. Springer, Berlin Heidelberg New York

  50. Yetkinler DN, Ladd AL, Poser RD et al. (1999) Biomechanical evaluation of fixation of intra-articular fractures of the distal part of the radius in cadavera: Kirschner wires compared with calcium-phosphate bone cement. J Bone Joint Surg Am 81: 391–399

    CAS  PubMed  Google Scholar 

  51. Zimmermann R, Gabl M, Lutz M et al. (2003) Injectable calcium phosphate bone cement Norian SRS for the treatment of intra-articular compression fractures of the distal radius in osteoporotic women. Arch Orthop Trauma Surg 123: 22–27

    PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Linhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linhart, W., Briem, D., Peters, A. et al. Resorbierbare Kalziumphosphatzemente. Trauma Berufskrankh 6, 277–284 (2004). https://doi.org/10.1007/s10039-004-0967-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10039-004-0967-5

Schlüsselwörter

Keywords

Navigation