Skip to main content
Log in

Analysis of the stiffness and damping characteristics of compacted sand-in-fines granular composites: a multiscale investigation

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Compacted clay-aggregate composites are extensively utilized or found in various geotechnical engineering projects such as the core of earth embankment dams, the pile foundation of offshore structures, or the impervious blankets in waste disposal landfills. In this study, data from resonant column tests at small shear strains are exploited to examine the dynamic shear modulus and energy dissipation characteristics of compacted clay-sand mixtures and develop empirical expressions for their small-strain dynamic properties. The models incorporate the influences of confining pressure (p'), void ratio (e), aggregate content (AC) and clay plasticity index (PI). Moreover, the application of the equivalent plasticity index (PI*) in the estimation of small-strain dynamic properties is rigorously examined. The level of accuracy of the developed models is inspected with simple comparisons against the experimental data. The proposed empirical correlations can be utilized in geotechnical earthquake engineering problems for the seismic stability analysis of geo-structures containing compacted clay-sand mixtures. These empirical models also comprise a basis to discuss the mechanical behavior of composite granular systems at multi-scales. In this regard, the involved micromechanisms, particularly the contact response of sand-clay systems, are discussed integrating the macroscopic results from the present work with micromechanical-based data previously published in the literature. This analysis highlighted the important role of the formed coating of microparticles on the constitutive behavior of sand grains at their contacts, which in turn, provided some additional insights to explain the macroscopic behavior of clay-sand mixtures as obtained from the element-size experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(a\) :

Acceleration

AC :

Aggregate content

\({A}_{D}\) :

A model parameter in the \({D}_{min}\) equation

\({A}_{G}\) :

A model parameter in the \({G}_{max}\) equation

\({c}_{c}\) :

Clay content

\({C}_{u}\) :

Coefficient of uniformity

\(d\) :

Diameter of the soil sample

\({d}_{50}\) :

Mean particle size

\({D}_{min}\) :

Minimum damping ratio

\(e\) :

Void ratio

\({e}_{c}\) :

Void ratio of clay portion

\(f\) :

Frequency

\(f_{1} ,\,f_{2}\) :

The frequencies corresponding to the vibration amplitude of 0.707 Zmax

\({f}_{r}\) :

Resonant frequency

\(f(e)\) :

Void ratio function

\({G}_{max}\) :

Maximum shear modulus

\(I\) :

Mass polar moment of inertia of the soil sample

\({I}_{0}\) :

Mass polar moment of inertia of the drive mechanism

\(l\) :

Distance between the accelerometer and the axis of rotation

\(L\) :

Length of the soil sample

\(m\) :

Mass of the soil sample

MDD :

Maximum dry density

\(n\) :

Number of cycles

\({n}_{D}\) :

A model parameter in the \({D}_{min}\) equation

\({n}_{G}\) :

A model parameter in the \({G}_{max}\) equation

OMC :

Optimum moisture content

\(p^{\prime }\) :

Isotropic confining pressure

\({p}_{atm}\) :

Atmosphere pressure

\(Pc_{a} ,Pc_{b}\) :

Clay contents obtained from the gradation curves of the composite specimens having particles less than 2 and 0.425 mm, respectively.

PI :

Plasticity index

\({PI}^{*}\) :

Equivalent plasticity index

\(R\) :

Radius of the soil sample/Reduction factor in the \({PI}^{*}\) equation

RC :

Relative compaction

\(V\) :

Peak output voltage

\({V}_{s}\) :

Shear wave velocity

\({x}_{G}\) :

A model parameter in the \({G}_{max}\) equation

\({Y}_{measured}\) :

Measured displacement of the accelerometer

\(Z\) :

Amplitude of vibration

\({Z}_{max}\) :

Maximum amplitude of vibration

\(\beta\) :

A coefficient for shear wave velocity determination

\(\gamma\) :

Shear strain

\({\gamma }_{1}\) :

Shear strain amplitude in the first cycle

\({\gamma }_{1+n}\) :

Shear strain amplitude in the (\(1+n\))th cycle

\(\delta\) :

Logarithmic decrement

\(\theta\) :

Rotation angle of the top of the soil sample

\(\rho\) :

Density of the soil sample

\(\omega\) :

Angular frequency of vibration

References

  1. Garga, V.K., Madureira, C.J.: Compaction characteristics of river terrace gravel. J. Geotech. Eng. 111(8), 987–1007 (1985)

    Article  Google Scholar 

  2. Jafari, M.K., Shafiee, A.: Mechanical behavior of compacted composite clays. Can. Geotech. J. 41(6), 1152–1167 (2004)

    Article  Google Scholar 

  3. Soltani-Jigheh, H., Soroush, A.: Post-cyclic behavior of compacted clay-sand mixtures. Int. J. Civ. Eng. 4(3), 226–243 (2006)

    Google Scholar 

  4. Hassanipour, A., Shafiee, A., Jafari, M.K.: Low-amplitude dynamic properties for compacted sand-clay mixtures. Int. J. Civ. Eng. 9(4), 255–264 (2011)

    Google Scholar 

  5. Zamanian, M., Payan, M., Memarian, S., Senetakis, K.: Impact of bedding plane direction and type of plastic microparticles on stiffness of inherently anisotropic gap-graded soils: index, wave propagation and micromechanical-based interpretations. Soil Dyn. Earthq. Eng. 150, 106924 (2021)

    Article  Google Scholar 

  6. Abeele, W.V.: The influence of bentonite on the permeability of sandy silts. Nucl. Chem. Waste Manag. 6(1), 81–88 (1986)

    Article  Google Scholar 

  7. Chapuis, R.P.: Sand–bentonite liners: predicting permeability from laboratory tests. Can. Geotech. J. 27(1), 47–57 (1990)

    Article  Google Scholar 

  8. Pandian, N.S., Nagaraj, T.S., Raju, P.S.R.N.: Permeability and compressibility behavior of bentonite-sand/soil mixes. Geotech. Test. J. 18(1), 86–93 (1995)

    Article  Google Scholar 

  9. Vallejo, L.E., Mawby, R.: Porosity influence on the shear strength of granular material–clay mixtures. Eng. Geol. 58(2), 125–136 (2000)

    Article  Google Scholar 

  10. Yagiz, S.: Brief note on the influence of shape and percentage of gravel on the shear strength of sand and gravel mixtures. Bull. Eng. Geol. Environ. 60(4), 321–323 (2001)

    Article  Google Scholar 

  11. Shafiee, A.: Permeability of compacted granule–clay mixtures. Eng. Geol. 97(3–4), 199–208 (2008)

    Article  Google Scholar 

  12. Li, Y.: Effects of particle shape and size distribution on the shear strength behavior of composite soils. Bull. Eng. Geol. Environ. 72(3), 371–381 (2013)

    Article  Google Scholar 

  13. Fei, K.: Experimental study of the mechanical behavior of clay–aggregate mixtures. Eng. Geol. 210, 1–9 (2016)

    Article  Google Scholar 

  14. Moon, S.W., Vinoth, G., Subramanian, S., et al.: Effect of fine particles on strength and stiffness of cement treated sand. Granular Matter 22, 9 (2020). https://doi.org/10.1007/s10035-019-0975-6

    Article  Google Scholar 

  15. Wei, X., Liu, H., Ku, T.: Effects of plastic fines content on the engineering properties of cement-stabilized sands. Granular Matter 23, 46 (2021). https://doi.org/10.1007/s10035-021-01114-5

    Article  Google Scholar 

  16. Kim, M., Seo, H.: Evaluation of one- and two-parameter models for estimation of void ratio of binary sand mixtures deposited by dry pluviation. Granular Matter 21, 71 (2019). https://doi.org/10.1007/s10035-019-0925-3

    Article  Google Scholar 

  17. Carraro, J.A.H., Bandini, P., Salgado, R.: Liquefaction resistance of clean and nonplastic silty sands based on cone penetration resistance. J. Geotech. Geoenviron. Eng. 129(11), 965–976 (2003)

    Article  Google Scholar 

  18. Meidani, M., Shafiei, A., Habibagahi, G., Jafari, M. K., Mohri, Y., Ghahramani, A., & Chang, C.S.: Granule shape effect on the shear modulus and damping ratio of mixed gravel and clay (2008)

  19. Dinesh, S.V., Yamada, S., Hyodo, M.: Low strain shear modulus of sand-clay mixtures. In: GeoCongress 2008: Geosustainability and Geohazard Mitigation, pp. 335–342 (2008)

  20. Shafiee, A., Ghate, R.: Shear modulus and damping ratio in aggregate-clay mixtures: an experimental study versus ANNs prediction. J. Appl. Sci. 8(18), 3068–3082 (2008)

    Article  ADS  Google Scholar 

  21. Choo, H., Burns, S.E.: Effect of overconsolidation ratio on dynamic properties of binary mixtures of silica particles. Soil Dyn. Earthq. Eng. 60, 44–50 (2014)

    Article  Google Scholar 

  22. Fei, K., Xu, J.: Dynamic behavior of clay-aggregate mixtures. Adv. Mater. Sci. Eng. (2017). https://doi.org/10.1155/2017/2479507

    Article  Google Scholar 

  23. Payan, M., Senetakis, K., Khoshghalb, A., Khalili, N.: Characterization of the small-strain dynamic behaviour of silty sands; contribution of silica non-plastic fines content. Soil Dyn. Earthq. Eng. 102, 232–240 (2017)

    Article  Google Scholar 

  24. Park, D., Kishida, T.: Shear modulus reduction and damping ratio curves for earth core materials of dams. Can. Geotech. J. 56(1), 14–22 (2019)

    Article  Google Scholar 

  25. Huang, X., Zhou, A., Wang, W., Jiang, P.: Characterization of the dynamic properties of clay–gravel mixtures at low strain level. Sustainability 12(4), 1616 (2020)

    Article  Google Scholar 

  26. Ochoa-Cornejo, F., Bobet, A., Johnston, C., Santagata, M., Sinfield, J.V.: Dynamic properties of a sand–nanoclay composite. Géotechnique 70(3), 210–225 (2020)

    Article  Google Scholar 

  27. Santamarina, J.C., Klein, K.A., Fam, M.A.: Soils and Waves. J. Wiley & Sons, New York (2001)

    Google Scholar 

  28. O’Donovan, J., Ibrain, E., O’Sullivan, C., Hamlin, S., Muir Wood, D., Marketos, G.: Micromechanics of seismic wave propagation in granular materials. Granular Matter 18, 1–18 (2016)

    Article  Google Scholar 

  29. Otsubo, M., O’Sullivan, C., Hanley, K.J., Sim, W.W.: Influence of packing density and stress on the dynamic response of granular materials. Granular Matter 19, 1–18 (2017)

    Article  Google Scholar 

  30. Hua, T., Van Gorder, R.A.: Wave propagation and pattern formation in two-dimensional hexagonally-packed granular crystals under various configurations. Granular Matter 21, 3 (2019). https://doi.org/10.1007/s10035-018-0852-8

    Article  Google Scholar 

  31. Wang, C., Zhang, Q., Vavakis, A.F.: Wave transmission in 2D nonlinear granular-solid interfaces, including rotational and frictional effects. Granular Matter 23, 1–24 (2021)

    Article  Google Scholar 

  32. Gu, X.Q., Yang, J.: A discrete element analysis of elastic properties of granular materials. Granular Matter 15, 139–147 (2013)

    Article  Google Scholar 

  33. Gu, X., Yang, J., Huang, M.: DEM simulations of the small strain stiffness of granular soils: effect of stress ratio. Granular Matter 15, 287–298 (2013)

    Article  Google Scholar 

  34. Reddy, N.S., He, H., Senetakis, K.: DEM analysis of small and small-to-medium strain shear modulus of sands. Comput. Geotech. 141, 104518 (2022)

    Article  Google Scholar 

  35. Santamarina, J.C., Cascante, G.: Stress anisotropy and wave propagation: a micromechanical view. Can. Geotech. J. 33(5), 770–782 (1996)

    Article  Google Scholar 

  36. Yimsiri, S., Soga, K.: Micromechanics-based stress–strain behaviour of soils at small strains. Geotechnique 50, 559–571 (2000)

    Article  Google Scholar 

  37. Sandeep, C.S., Senetakis, K.: An experimental investigation of the microslip displacement of geological materials. Comput. Geotech. 107, 55–67 (2019)

    Article  Google Scholar 

  38. Sandeep, C.S., Li, S., Senetakis, K.: Scale and surface morphology effects on the micromechanical contact behavior of granular materials. Tribol. Int. 159, 106929 (2021). https://doi.org/10.1016/j.triboint.2021.106929

    Article  Google Scholar 

  39. Senetakis, K., Payan, M., Li, H., Zamanian, M.: Nonlinear stiffness and damping characteristics of gravelly crushed rock: developing generic curves and attempting multi-scale insights. Transp. Geotech. 31, 100668 (2021)

    Article  Google Scholar 

  40. Yamada, S., Hyodo, M., Orense, R.P., Dinesh, S.V.: Initial shear modulus of remolded sand-clay mixtures. J. Geotech. Geoenviron. Eng. 134(7), 960–971 (2008)

    Article  Google Scholar 

  41. Yamada, S., Hyodo, M., Orense, R.P., Dinesh, S.V., Hyodo, T.: Strain-dependent dynamic properties of remolded sand-clay mixtures. J. Geotech. Geoenviron. Eng. 134(7), 972–981 (2008)

    Article  Google Scholar 

  42. Shivaprakash, B.G., Dinesh, S.V.: Dynamic properties of sand–fines mixtures. Geotech. Geol. Eng. 35(5), 2327–2337 (2017)

    Article  Google Scholar 

  43. Senetakis, K., Payan, M.: Small strain damping ratio of sands and silty sands subjected to flexural and torsional resonant column excitation. Soil Dyn. Earthq. Eng. 114, 448–459 (2018)

    Article  Google Scholar 

  44. ASTM D7928: Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. ASTM International (2016).

  45. ASTM D6913: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International (2017)

  46. Maroof, M.A., Mahboubi, A., Vincens, E., et al.: Effects of particle morphology on the minimum and maximum void ratios of granular materials. Granular Matter 24, 41 (2022). https://doi.org/10.1007/s10035-021-01189-0

    Article  Google Scholar 

  47. ASTM D4015: Standard Test Methods for Modulus and Damping of Soils by Fixed-Base Resonant Column Devices. ASTM International (2015)

  48. Payan, M., Khoshghalb, A., Senetakis, K., Khalili, N.: Effect of particle shape and validity of Gmax models for sand: a critical review and a new expression. Comput. Geotech. 72, 28–41 (2016)

    Article  Google Scholar 

  49. Li, H., He, H., Senetakis, K.: Calibration exercise of a Hardin-type resonant column. Géotechnique 68(2), 171–176 (2018)

    Article  Google Scholar 

  50. Richard, F.E., Woods, R.E., Hall Jr, J.R.: Vibration of soils and foundations (1970)

  51. Stokoe, K.H., Darendeli, M.B., Andrus, R.D., Brown, L.T.: Dynamic soil properties: laboratory, field and correlation studies. In: Earthquake Geotechnical Engineering, pp. 811–845 (1999)

  52. Payan, M., Senetakis, K., Khoshghalb, A., Khalili, N.: Influence of particle shape on small-strain damping ratio of dry sands. Géotechnique 66(7), 610–616 (2016)

    Article  Google Scholar 

  53. Senetakis, K., Anastasiadis, A., Pitilakis, K.: The Small-strain Shear Modulus and Damping Ratio of Quartz and Volcanic Sands. ASTM International, USA (2012)

    Book  Google Scholar 

  54. Senetakis, K., Anastasiadis, A., Pitilakis, K.: A comparison of material damping measurements in resonant column using the steady-state and free-vibration decay methods. Soil Dyn. Earthq. Eng. 74, 10–13 (2015)

    Article  Google Scholar 

  55. Menq, F.Y.: Dynamic properties of sandy and gravelly soils. The University of Texas at Austin (2003)

  56. Wichtmann, T., Triantafyllidis, T.: Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax. J. Geotech. Geoenviron. Eng. 135(10), 1404–1418 (2009)

    Article  Google Scholar 

  57. Payan, M., Khoshghalb, A., Senetakis, K., Khalili, N.: Small-strain stiffness of sand subjected to stress anisotropy. Soil Dyn. Earthq. Eng. 88, 143–151 (2016)

    Article  Google Scholar 

  58. Payan, M.: Study of small strain dynamic properties of sands and silty sands. School Of Civil And Environmental Engineering, Sydney, Australia (2017)

  59. Payan, M., Senetakis, K., Khoshghalb, A., Khalili, N.: Effect of gradation and particle shape on small-strain Young’s modulus and Poisson’s ratio of sands. Int. J. Geomech. 17(5), 04016120 (2017)

    Article  Google Scholar 

  60. Zamanian, M., Mollaei-Alamouti, V., Payan, M.: Directional strength and stiffness characteristics of inherently anisotropic sand: the influence of deposition inclination. Soil Dyn. Earthq. Eng. 137, 106304 (2020)

    Article  Google Scholar 

  61. Zamanian, M., Payan, M., Jafarzadeh, F., Ranjbar, N., Senetakis, K.: Evolution of dynamic properties of cross-anisotropic sand subjected to stress anisotropy. J. Geotech. Geoenviron. Eng. 147(7), 04021048 (2021)

    Article  Google Scholar 

  62. He, H., Payan, M., Senetakis, K.: The behaviour of a recycled road base aggregate and quartz sand with bender/extender element tests under variable stress states. Eur. J. Environ. Civ. Eng. 25(1), 152–169 (2021)

    Article  Google Scholar 

  63. Hardin, B.O., Richart, F.E., Jr.: Elastic wave velocities in granular soils. J. Soil Mech. Found. Div. 89(1), 33–65 (1963)

    Article  Google Scholar 

  64. Hardin, B.O., Black, W.L.: Closure to “Vibration modulus of normally consolidated clay.” J. Soil Mech. Found. Div. 95(6), 1531–1537 (1969)

    Article  Google Scholar 

  65. Jamiolkowski, M., Lancellotta, R., Lo Presti, D.C.F.: Remarks on the stiffness at small strains of six Italian clays. In: Shibuya, M., Miura, S. (eds.) Pre-failure Deformation of Geomaterials, pp. 817–836. Balkema, Rotterdam (1995)

    Google Scholar 

  66. Lo Presti, D.C.F., Jamiolkowski, M., Pallara, O., Cavallaro, A., Pedroni, S.: Shear modulus and damping of soils. Géotechnique 47(3), 603–617 (1997)

    Article  Google Scholar 

  67. Payan, M., Jamshidi Chenari, R.: Small strain shear modulus of anisotropically loaded sands. Soil Dyn. Earthq. Eng. 125, 105726 (2019)

    Article  Google Scholar 

  68. Senetakis, K., Madhusudhan, B.N.: Dynamics of potential fill–backfill material at very small strains. Soils Found. 55(5), 1196–1210 (2015)

    Article  Google Scholar 

  69. Cho, G.C., Dodds, J., Santamarina, J.C.: Closure to “particle shape effects on packing density, stiffness, and strength: natural and crushed sands” by Gye-Chun Cho, Jake Dodds, and J. Carlos Santamarina. J. Geotech. Geoenviron. Eng. 133(11), 1474–1474 (2007). https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1474)

    Article  Google Scholar 

  70. Senetakis, K., Coop, M.R., Todisco, M.C.: Tangential load–deflection behaviour at the contacts of soil particles. Géotech. Lett. 3(2), 59–66 (2013)

    Article  Google Scholar 

  71. Sandeep, C.S., Senetakis, K.: Grain-scale mechanics of quartz sand under normal and tangential loading. Tribol. Int. 117, 261–271 (2018)

    Article  Google Scholar 

  72. Kasyap, S.S., Senetakis, K.: Interface load–displacement behaviour of sand grains coated with clayey powder: experimental and analytical studies. Soils Found. 59(6), 1695–1710 (2019)

    Article  Google Scholar 

  73. Kasyap, S.S., Senetakis, K.: An experimental investigation on the tribological behaviour of nominally flat quartz grains with gouge material in dry, partial saturated and submersed conditions. Pure Appl. Geophys. 177(7), 3283–3300 (2020)

    Article  ADS  Google Scholar 

  74. Kasyap, S.S., Senetakis, K., Zhao, J.: Cyclic normal load–displacement behaviour of clay-coated sand grain contacts. Geotechnique 71(3), 216–225 (2021)

    Google Scholar 

  75. Kasyap, S.S., Li, S., Senetakis, K.: Influence of natural coating type on the frictional and abrasion behaviour of siliciclastic-coated sedimentary sand grains. Eng. Geol. 281, 105983 (2021)

    Article  Google Scholar 

  76. Payan, M., Senetakis, K.: Effect of anisotropic stress state on elastic shear stiffness of sand–silt mixture. Geotech. Geol. Eng. 37(3), 2237–2244 (2019)

    Article  Google Scholar 

  77. Payan, M., Khoshini, M., Jamshidi Chenari, R.: Elastic dynamic Young’s modulus and Poisson’s ratio of sand–silt mixtures. J. Mater. Civ. Eng. 32(1), 04019314 (2020)

    Article  Google Scholar 

  78. Goudarzy, M., Magnanimo, V., König, D., Schanz, T.: Anisotropic stress state and small strain stiffness in granular materials: RC experiments and DEM simulations. Meccanica 55(10), 1869–1883 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by a grant from the International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran; Project No. (6715-P97-5), on the dynamic deformation properties of clay-sand mixtures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghdad Payan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest from the present study. This work contains original material as a result of purely academic study without any kind of private funding or other conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a part of topical collection: Energy transport and dissipation in granular systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiee, A., Hassanipour, A., Payan, M. et al. Analysis of the stiffness and damping characteristics of compacted sand-in-fines granular composites: a multiscale investigation. Granular Matter 24, 87 (2022). https://doi.org/10.1007/s10035-022-01247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01247-1

Keywords

Navigation