Skip to main content
Log in

Evolution and collision of wave fronts in two-dimensional hexagonal packing granular lattices

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In this paper, we investigate evolution and collision of wave fronts propagating in two-dimensional (2D) hexagonal packing confined in a rectangular region, using the fifth-order Runge–Kutta numerical scheme, under various impacts including one impact, continuous impacts and discontinuous impacts. For the case of one impact, numerical results indicate that the phase of the wave front is not in phase and the relationship between the peak amplitude of the velocity \({V}_{max}\) and the distance \(m\) from the center of the wave front satisfies the equation \({V}_{max}\sim exp(dm)\). With the increase of propagating depth, the attenuation of velocity at each position of the wave front is also different. At the corner of the wave front moving in the y-direction, the peak amplitude of velocity follows the exponential relationship with the depth, which can be described by the nonlinear mapping method. But at the center, the peak amplitude no longer strictly follows the exponential relationship with the depth. For the case of continuous impacts, the decay of the peak amplitude is slower than that of one impact. Numerical simulations indicate that independent wave fronts induced by two discontinuous impacts, may merge in to one after a certain depth. The center of the merged wave front is moved to a new position, the peak amplitude at the center of the merged wave front also follows the exponential decay with the depth. When impacts are periodically distributed, our numerical results confirm that the wave fronts eventually evolve into a uniform wave front that can well be described by Nesterenko’s continuum approximation of a 1D chain of spheres. Our results provide a new idea for generating a plane wave front and effectively avoid the influence of defects or impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24(5), 733–743 (1983)

    Article  ADS  Google Scholar 

  2. Nesterenko, V.F.: Dynamics of Heterogeneous Materials, pp. 1–81. Springer, Berlin (2001)

    Book  Google Scholar 

  3. Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rep. 462(2), 21–66 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Rosas, A., Lindenberg, K.: Pulse propagation in granular chains. Phys. Rep. 735, 1–37 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. Kekic, A., Gorder, R.A.: Wave propagation across interfaces induced by different interaction exponents in ordered and disordered Hertz-like granular chains. Phys. D 384, 18–33 (2018)

    Article  MathSciNet  Google Scholar 

  6. Vergara, L.: Delayed scattering of solitary waves from interfaces in a granular container. Phys. Rev. E 73(6), 066623 (2006)

    Article  ADS  Google Scholar 

  7. Sinkovits, R.S., Sen, S.: Nonlinear dynamics in Granular columns. Phys. Rev. Lett. 74(14), 2686–2689 (1995)

    Article  ADS  Google Scholar 

  8. Theocharis, G., Kavousanakis, M., Kevrekidis, P.G., Daraio, C., Porter, M.A., Kevrekidis, I.G.: Localized breathing modes in granular crystals with defects. Phys. Rev. E 80(6), 066601 (2009)

    Article  ADS  Google Scholar 

  9. Gomez, L.R., Turner, A.M., Hecke, M.V., Vitelli, V.: Shocks near jamming. Phys. Rev. Lett. 108(5), 058001 (2012)

    Article  ADS  Google Scholar 

  10. Lydon, J., Serra-Garcia, M., Daraio, C.: Local to extended transitions of resonant defect modes. Phys. Rev. Lett. 113(18), 185503 (2014)

    Article  ADS  Google Scholar 

  11. Doney, R.L., Sen, S.: Impulse absorption by tapered horizontal alignments of elastic spheres. Phys. Rev. E 72, 041304 (2005)

    Article  ADS  Google Scholar 

  12. Doney, R., Sen, S.: Decorated, tapered, and highly nonlinear granular chain. Phys. Rev. Lett. 97, 155502 (2006)

    Article  ADS  Google Scholar 

  13. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Energy trapping and shock disintegration in a composite. Phys. Rev. Lett. 96, 058002 (2006)

    Article  ADS  Google Scholar 

  14. Hong, J.: Universal power-law decay of the impulse energy in granular. Phys. Rev. Lett. 94, 108001 (2005)

    Article  ADS  Google Scholar 

  15. Machado, L.P.S., Sen, S.: Granular chains with fixed side decoration as impact protector and signals filter. Phys. Rev. E 103(4), 042904 (2021)

    Article  ADS  Google Scholar 

  16. Spadoni, A., Daraio, C.: Generation and control of sound bullets with a nonlinear acoustic lens. PNAS 107, 7230 (2010)

    Article  ADS  Google Scholar 

  17. Boechler, N., Theocharis, G., Daraio, C.: Bifurcation-base acoustic switching and rectification. Nat. Mater. 10, 665–668 (2011)

    Article  ADS  Google Scholar 

  18. Li, F., Anzel, P., Yang, J., Kevrekidis, P.G., Daraio, C.: Granular acoustic switches and logic elements. Nat. Commun. 5, 5311 (2014)

    Article  ADS  Google Scholar 

  19. Manjunath, M., Awasthi, A.P., Geubelle, P.: Plane wave propagation in 2D and 3D monodisperse periodic granular media. Granul. Matter 16, 141–150 (2014)

    Article  Google Scholar 

  20. Szelengowicz, I., Kevrekidis, P.G., Daraio, C.: Wave propagation in square granular crystals with spherical interstitial intruders. Phys. Rev. E 86(6), 061306 (2012)

    Article  ADS  Google Scholar 

  21. Szelengowicz, I., Hasan, M.A., Starosvetsky, Y., Vakakis, A., Daraio, C.: Energy equipartition in two-dimensional granular systems with spherical intruders. Phys. Rev. E 87(3), 032204 (2013)

    Article  ADS  Google Scholar 

  22. Leonard, A., Fraternali, F., Daraio, C.: Directional wave propagation in a highly nonlinear square packing of spheres. Exp Mech 53, 327–337 (2013)

    Article  Google Scholar 

  23. Tichler, A.M., Gómez, L.R., Upadhyaya, N., Campman, X., Nesterenko, V.F., Vitelli, V.: Transmission and reflection of strongly nonlinear solitary waves at granular interfaces. Phys. Rev. Lett. 111(4), 048001 (2013)

    Article  ADS  Google Scholar 

  24. Chong, C., Kevrekidis, P.G., Ablowitz, M.J., Ma, Y.P.: Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices. Phys. Rev. E 93(1), 012909 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Jiao, W., Xihua, Ch.: Impact energy distribution and wavefront shape in granular material assemblies. Granul Matter 21, 23 (2019)

    Article  Google Scholar 

  26. Bourrier, F., Nicot, F., Dare, F.: Physical process within a 2D granular layer during an impact. Granul Matter 10, 416–437 (2008)

    Article  Google Scholar 

  27. Leonard, A., Chong, C., Kevrekidis, P.G., Daraio, C.: Travelling waves in 2D hexagonal granular crystal lattices. Granul Matter 16, 531–542 (2014)

    Article  Google Scholar 

  28. Leonard, A., Daraio, C.: Stress wave anisotropy in centered square highly nonlinear granular systems. Phys. Rev. Lett. 108, 214301 (2012)

    Article  ADS  Google Scholar 

  29. Leonard, A., Daraio, C.: Effects of weak disorder on stress-wave anisotropy in centered square nonlinear granular crystals. Phys. Rev. E 86, 031305 (2012)

    Article  ADS  Google Scholar 

  30. Awasthi, A.P., Smith, K.J., Geubelle, P.H., Lambros, J.: Propagation of solitary waves in 2D granular media: a numerical study. Mech. Mater. 54, 100–112 (2012)

    Article  Google Scholar 

  31. Kocharyan, H., Karanjgaokar, N.: Influence of interactions between multiple point defects on wave scattering in granular media. Granul. Matter 24, 2 (2022)

    Article  Google Scholar 

  32. Hua, T., Gorder, R.A.: Wave propagation and pattern formation in two-dimensional hexagonally-packed granular crystals under various configurations. Granul. Matter 21, 3 (2019)

    Article  Google Scholar 

  33. Li, L.L., Yang, X.Q., Zhang, W.: Two interaction solitary waves propagating in two-dimensional hexagonal packing granular system. Granul. Matter 20, 49 (2018)

    Article  ADS  Google Scholar 

  34. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  35. Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104 (1997)

    Article  ADS  Google Scholar 

  36. Yang, X.Q., Jiao, J.P., Meng, X.W., Zhang, W.: Collisions between solitary waves propagating in the two-dimensional hexagonal packing granular system. Int. J. M. Phys. B 35, 2150314 (2021)

    Article  ADS  Google Scholar 

  37. Lisyansky, A., Meimukhin, D., Starosvetsky, Y.: Primary wave transmission in the hexagonally packed, damped granular crystal with a spatially varying cross section. Commun. Nonlinear Sci. Numer. Simulat. 27, 193–205 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. Starosvetsky, Y.: Evolution of the primary pulse in one-dimensional granular crystals subject to on-site perturbations: analytical study. Phys. Rev. E 85, 051306 (2012)

    Article  ADS  Google Scholar 

  39. Manciu, M., Sen, S., Hurd, A.J.: Crossing of identical solitary waves in a chain of elastic beads. Phys. Rev. E 63, 016614 (2000)

    Article  ADS  Google Scholar 

  40. Ávalos, E., Sen, S.: How solitary waves collide in discrete granular alignments. Phys. Rev. 79, 046607 (2009)

    ADS  Google Scholar 

Download references

Funding

This research is supported in part by the National Natural Science Foundation of China (Grant Nos. 11774417) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20160238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xian-qing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian-qing, Y., Xian-wen, M. & Wei, Z. Evolution and collision of wave fronts in two-dimensional hexagonal packing granular lattices. Granular Matter 24, 88 (2022). https://doi.org/10.1007/s10035-022-01246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01246-2

Keywords

Navigation