Skip to main content
Log in

Evolution of meso-structures and mechanical properties of granular materials under triaxial compression state from complex network perspective

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The evolution of the network connection of granular materials is investigated by performing a series of numerical simulations in triaxial compression tests with different initial porosities by discrete element method (DEM). Results of evolution characteristics of complex network are reported for both dense and loose assembles. The simulation focuses on the influence of porosity on connectivity evolution, and reveals the correlation between the parameters in macro and mesoscale. Kinds of properties are studied, including degree and its distribution, clustering coefficient, network density and the average shortest path. The results demonstrate the phenomenon of dilataion due to shear deformation are able to be reflected by those mesocope parameters mentioned. Specifically, in the process of the dilatation, the rate of contact disintegration exceeds the rate of contact creation, which means the loss of connectivity, thus the values of some properties decrease, like degree, clustering coefficient and network density, but some increase like the average shortest path. Additionally, the bridging of macro and mesoscope are built regarding the parameters of the Cam-Clay model and complex network. From the results, the parameter M (determined by q = Mp′ at critical state) and the reference parameter \( {\text{T}} \) (\( T_{j}^{s} = L_{j}^{s} \left( {1 - \log_{{D_{j}^{s} }} t} \right) \), calculated according to the average degree \( D_{j}^{s} \) and shortest path \( L_{j}^{s} \) of the critical state) have a positive correlation. And a linear relationship between the slope of isotropic virgin-consolidation λ and the rate of decline of the average shortest path upon loading is represented as well. These achievements are the first step in an ongoing study of establishing the multi-scale constitutive from complex network perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\( I \) :

Inertial number

\( \dot{\varepsilon } \) :

Strain rate

\( d \) :

Mean size

\( \rho \) :

Grain density

\( p' \) :

Mean effective stress

\( F_{n} \), \( F_{t} \) :

Normal and tangential forces (with the convention of positive tensile forces), respectively

\( u_{n} \), \( u_{t} \) :

Normal and tangential interparticle displacements, respectively

\( K_{n} \),\( K_{t} \) :

Normal and tangential stiffnesses, respectively

\( \varphi \) :

Interparticle friction angle

\( \varepsilon_{11} \), \( \varepsilon_{22} \), \( \varepsilon_{33} \) :

Strains of the container in the directions of x, y and z

\( \sigma_{11} ,\sigma_{22} ,\sigma_{33} \) :

Stress in the directions of x, y and z, \( \sigma_{11} = \sigma_{33} \)

\( p \) :

Deviator stress, given by \( \left( {\sigma_{22} - \sigma_{11} } \right) \)

\( {\text{R}} \) :

Mean radius

G:

Graph

\( C_{i} \) :

Clustering coefficient at node i

\( k_{i} \) :

Degree of node i

\( t_{i} \) :

Number of triangles attached to the node i

C:

Clustering coefficient

n:

Number of nodes

D:

Density of graph G

m :

Number of edges

L:

Shortest path

V:

Set of nodes in graph G

\( d\left( {s,t} \right) \) :

Shortest path from node s to node t

\( p_{k} \) :

Probability that a vertex chosen uniformly at random has degree k

X :

A discrete random variable

e :

Base of the natural logarithms

k!:

Factorial of k

\( \mu \) :

Shape parameter, equal to the expected value of X and also to its variance

\( {\text{M}} \) :

Critical parameter by q = Mp’

\( T \) :

Reference variable,\( T_{j}^{s} \) for the sample s under confining pressure j

t :

Material parameter, determined by tests to make \( T \) satisfy the conditions

\( \begin{array}{*{20}c} \lambda \\ \end{array} \) :

Slope of isotropic virgin-consolidation line

\( \begin{array}{*{20}c} \beta \\ \end{array} \) :

Slope of the average shortest path

References

  1. Rhodes, M.J.: Principles of Powder Technology. Wiley, New York (1990)

    Google Scholar 

  2. Doanh, T., Abdelmoula, N., Gribaa, L., Nguyên, T.T.T., Hans, S., Boutin, C., Le Bot, A.: Dynamic instabilities under isotropic drained compression of idealized granular materials. Acta Geotech. 12(3), 657–676 (2017)

    Article  Google Scholar 

  3. Cabalar, A.F., Clayton, C.R.I.: Some observations of the effects of pore fluids on the triaxial behavior of a sand. Granul. Matter 12, 87–95 (2010)

    Article  Google Scholar 

  4. Cui, D., Wu, W., Xiang, W., Doanh, T., Chen, Q., Wang, S., Liu, Q., Wang, J.: Stick–slip behaviours of dry glass beads in triaxial compression. Granul. Matter 19(1), 1 (2017)

    Article  ADS  Google Scholar 

  5. Doanh, T., Abdelmoula, N., Nguyen, T.T.T., Hans, S., Boutin, C., Le Bot, A.: Unexpected liquefaction under isotropic consolidation of idealized granular materials. Granul. Matter 18(3), 67 (2016)

    Article  Google Scholar 

  6. Cabalar, A.F.: Stress fluctuations in granular material response during cyclic direct shear test. Granul. Matter 17(4), 439–446 (2015)

    Article  Google Scholar 

  7. Doanh, T., Hoang, M.T., Roux, J.-N., Dequeker, C.: Stick–slip behaviour of model granular materials in drained triaxial compression. Granul. Matter 15(1), 1–23 (2013)

    Article  Google Scholar 

  8. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  9. Tsunekawa, H., Iwashita, K.: Numerical simulation of triaxial test using two and three dimensional DEM. In: Kishino, Y. (ed.) Powders and Grains 01, pp. 177–182. A. A. Balkema, Rotterdam (2001)

    Google Scholar 

  10. Cui, L., O’Sullivan, C., O’Neill, S.: An analysis of the triaxial apparatus using a mixed boundary three-dimensional discrete element model. Géotechnique 57(10), 831–844 (2007)

    Article  Google Scholar 

  11. Zhou, W., Xu, K., Ma, G., Yang, L., Chang, X.: Effects of particle size ratio on the macro- and microscopic behaviors of binary mixtures at the maximum packing efficiency state. Granul. Matter 18(4), 81 (2016)

    Article  ADS  Google Scholar 

  12. Dondi, G., Simone, A., Vignali, V., Manganelli, G.: Numerical and experimental study of granular mixes for asphalts. Powder Technol. 232, 31–40 (2012)

    Article  Google Scholar 

  13. Lee, S.J., Hashash, Y.M.A., Nezami, G.E.: Simulation of triaxial compression tests with polyhedral discrete elements. Comput. Geotech. 43(3), 92–100 (2012)

    Article  Google Scholar 

  14. Aboul Hosn, R., Sibille, L., Benahmed, M., Chareyre, B.: Discrete numerical modeling of loose soil with spherical particles and interparticle rolling friction. Granul. Matter 19(1), 4 (2017)

    Article  Google Scholar 

  15. Rothenburg, L., Kruyt, N.P.: Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41(21), 5763–5774 (2004)

    Article  MATH  Google Scholar 

  16. Kozichk, J., Tejchman, J.: DEM investigations of two-dimensional granular vortex- and anti-vortex-structures during plane strain compression. Granul. Matter 18, 20 (2016)

    Article  Google Scholar 

  17. Cambou, B., Magoariec, H., Nguyen, N.-S.: Granular Materials at Meso-scale: Towards a Change of Scale Approach. ISTE Press, Elsevier Ltd, UK (2016)

    MATH  Google Scholar 

  18. Walsh, S.D.C., Tordesillas, A., Peters, J.F.: Development of micromechanical models for granular media. Granul. Matter 9(5), 337–352 (2007)

    Article  MATH  Google Scholar 

  19. Barabási, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288(5), 60 (2003)

    Article  Google Scholar 

  20. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  ADS  MATH  Google Scholar 

  21. Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. U.S.A. 97(21), 11149–11152 (2000)

    Article  ADS  Google Scholar 

  22. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science (New York, N.Y.) 298(5594), 824–827 (2002)

    Article  ADS  Google Scholar 

  23. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268 (2001)

    Article  ADS  MATH  Google Scholar 

  24. Arévalo, R., Zuriguel, I., Maza, D.: Topological properties of the contact network of granular materials. Int. J. Bifurc. Chaos 19(02), 695 (2009)

    Article  MATH  Google Scholar 

  25. Soares, D.J.B., Andrade, J.S., Herrmann, H.J., da Silva, L.R.: Three-dimensional apollonian networks. Int. J. Mod. Phys. C 17, 1219–1226 (2006)

    Article  ADS  MATH  Google Scholar 

  26. Walker, D.M., Tordesillas, A.: Topological evolution in dense granular materials: a complex networks perspective. Int. J. Solids Struct. 47(5), 624–639 (2010)

    Article  MATH  Google Scholar 

  27. Tordesillas, A.: Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Philos. Mag. 87(32), 4987–5016 (2007)

    Article  ADS  Google Scholar 

  28. Tordesillas, A., O’Sullivan, P., Walker, D.M., Paramitha.: Evolution of functional connectivity in contact and force chain networks: feature vectors, k-cores and minimal cycles. C. R. Méc 338(10), 556–569 (2010)

    Article  Google Scholar 

  29. Tordesillas, A., Pucilowski, S., Walker, D.M., Peters, J., Hopkins, M.: A complex network analysis of granular fabric evolution in three-dimensions. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 19(4-5), 471–495 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Walker, D.M., Tordesillas, A.: Taxonomy of granular rheology from grain property networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 85(1), 011304 (2012)

    Article  ADS  Google Scholar 

  31. da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)

    Article  ADS  Google Scholar 

  32. Lopera Perez, J.C., Kwok, C.Y., O’Sullivan, C., Huang, C., Hanley, K.J.: Assessing the quasi-static conditions for shearing in granular media within the critical state soil mechanics framework. Soils Found. 56(1), 152–159 (2016)

    Article  Google Scholar 

  33. Cundall, P.A., Strack, O.D.L.: A discrete numerical mode for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  34. Šmilauer, V., Catalano, E., Chareyre, B., et al.: Yade Documentation 2nd ed. The Yade Project (2015). https://doi.org/10.5281/zenodo.34073

  35. Chareyre, B., Briancon, L., Villard, P.: Theoretical versus experimental modeling of the anchorage capacity of geotextiles in trenches. Geosynth. Int. 9(9), 97–123 (2002)

    Article  Google Scholar 

  36. O’Sullivan, C., Bray, J.D., Li, S.: A new approach for calculating strain for particulate media. Int. J. Numer. Anal. Methods Geomech. 27(10), 859–877 (2003)

    Article  MATH  Google Scholar 

  37. Widulinski, Łukasz, Kozicki, Jan, Tejchman, Jacek: Numerical simulations of triaxial test with sand using. Arch. Hydro Eng. Environ. Mech. 56(3–4), 149–171 (2009)

    Google Scholar 

  38. Liu, I.-S.: Continuum Mechanics, pp. 41–50. Springer, Berlin (2002). ISBN 3-540-43019-9

    Book  Google Scholar 

  39. Roscoe, K.H., Schofield, A.N., Wroth, C.P.: On the yielding of soils. Géotechnique 8(1), 22–53 (1958)

    Article  Google Scholar 

  40. Barden, L., Ismail, H., Tong, P.: Plane strain deformation of granular material at low and high pressures. Géotechnique 19(4), 441–452 (1969)

    Article  Google Scholar 

  41. Salot, C., Gotteland, P., Villard, P.: Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granul. Matter 11(4), 221–236 (2009)

    Article  MATH  Google Scholar 

  42. Ray, S.S.: Graph theory with algorithms and its applications: in applied science and technology. Springer, Berlin (2013)

    MATH  Google Scholar 

  43. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Albert, R., Barabási, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Onnela, J.P., Saramäki, J., Kertész, J., et al.: Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(2), 065103 (2005)

    Article  Google Scholar 

  46. Saramäki, J., Kivelä, M., Onnela, J.P., Kaski, K., Kertész, J.: Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 75, 027105 (2007)

    Article  ADS  Google Scholar 

  47. Yates, R.D.: Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers, 3rd edn. Wiley, London (2014)

    Google Scholar 

  48. Roscoe, K.H., Schofield, A.N., Thurairajah, A.: Yielding of clays in states wetter than critical. Géotechnique 13(3), 211–240 (1963)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers and Prof. Stefan Luding for their valuable comments, and Mr. Xu Ran for his help when performing the DEM computation. This research was supported by National Key Research and Development of China (Project No. 2017YFC1501003), the 100-Talent Program of the Chinese Academy of Sciences (Granted to Dr. Enlong Liu), and Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDY-SSW-DQC015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enlong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Liu, E., Jiang, L. et al. Evolution of meso-structures and mechanical properties of granular materials under triaxial compression state from complex network perspective. Granular Matter 20, 54 (2018). https://doi.org/10.1007/s10035-018-0827-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0827-9

Keywords

Navigation