Skip to main content
Log in

Laboratory observations of frictional sliding of individual contacts in geologic materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper gives the results of grain-to-grain sliding friction experiments on several naturally occurring geologic materials and two manufactured materials. The materials include quartz sands with mean grain size \(d_{ave}\) ranging from 0.14 to 3 mm, crushed and ball milled gneiss with \(d_{ave} = 14-20\) mm, magnesite (limestone) with \(d_{ave}=2\) mm, and Caicos ooids with \(d_{ave}=0.44\) mm. The reference materials include manufactured glass beads (\(d_{ave} = 0.30\) and 1.0 mm) and spheres of a synthetic material (Delrin, \(d_{ave} = 19.05\) and 5.08 mm). The experiments involved normal loads \(F_{N}\) that ranged from 0.46 to 20 N, depending on material, and the subsequent application of an increasing shear force at a loading rate of 1 \(\hbox {Ns}^{-1}\). This work contributes to the goal of providing high-fidelity contact models for use in discrete element simulations of naturally occurring granular materials. The results presented here provide a picture of shear force-displacement behavior up to and through the onset of macroscopic sliding. For natural materials with relatively rough surfaces, the coefficient of friction \(\mu \) ranged from 0.1 to 0.9 at normal force levels \(F_{N} < 10\) N, but tended to converge to a narrower range (0.24–0.62) at higher \(F_{N}\) levels. Grains with low surface roughness (glass beads, synthetic material and the 3-mm-diameter sand), on the other hand, exhibited a trend of decreasing \(\mu \) with increasing \(F_{N}\), with terminal values in the range of 0.1–0.2 for \(10 \le F_{N} \le 20\) N. This behavior is explained in terms of the relationship between the normal force and the true area of contact. Additionally, observations of free sliding observed under cyclic shear loading are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pavelescu, D., Tudor, A.: The sliding friction coefficient—its evolution and usefulness. Wear 120, 321–336 (1987)

    Article  Google Scholar 

  2. Bhushan, B.: Contact mechanics of rough surfaces in tribology—multiple asperity contact. Tribol. Lett. 4, 1–35 (1998)

    Article  Google Scholar 

  3. Feeny, B., Guran, A., Hinrichs, N., Popp, K.: A historical review on dry friction and stick-slip phenomena. Appl. Mech. Rev. 51, 321–341 (1998)

    Article  ADS  Google Scholar 

  4. Liu, G., Wang, Q., Lin, C.: A survey of current models for simulating the contact between rough surfaces. Tribol. Trans. 42, 581–591 (1999)

    Article  Google Scholar 

  5. Barber, J.R., Ciavarella, M.: Contact mechanics. Int. J. Solids Struct. 37, 29–43 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Majumdar, A., Bhushan, B.: Fractal model of elastic-plastic contact between rough surfaces. J. Tribol. 113, 1–11 (1991)

    Article  Google Scholar 

  7. Carpinteri, A., Paggi, M.: Size-scale effects on the friction coefficient. Int. J. Solids Struct. 42, 2901–2910 (2005)

    Article  MATH  Google Scholar 

  8. Berman, A., Drummond, C., Israelachvili, J.: Amontons’ law at the molecular level. Tribol. Lett. 4, 95–101 (1998)

    Article  Google Scholar 

  9. Bowden, F.P., Tabor, D.: The area of contact between stationary and between moving surfaces. Proc. R. Soc. A 169, 391–413 (1938)

    Article  ADS  Google Scholar 

  10. Dieterich, J.H., Kilgore, B.D.: Direct Observation of frictional contacts: New insights for state-dependent properties. Pure Appl. Geophys. 143, 283–302 (1994)

    Article  ADS  Google Scholar 

  11. Archard, J.F.: Elastic deformation and the laws of friction. Proc. R. Soc. A 243, 190–205 (1957)

    Article  ADS  Google Scholar 

  12. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. A 295, 300–319 (1966)

    Article  ADS  Google Scholar 

  13. Byerlee, J.: Friction of rocks. Pure Appl. Geophys. 116, 615–626 (1978)

    Article  ADS  Google Scholar 

  14. Yoshioka, N., Scholz, C.H.: Elastic properties of contacting surfaces under normal and shear loads 2. Comparison of theory with experiment. J. Geophys. Res. 94, 17,691–17,700 (1989)

    Article  ADS  Google Scholar 

  15. Biegel, R.L., Wang, W., Scholz, C.H., Boitnott, G.N.: Micromechanics of rock friction 1. Effects of surface roughness on initial friction and slip hardening in westerly granite. J. Geophys. Res. 97, 8951–8964 (1992)

    Article  ADS  Google Scholar 

  16. Boitnott, G.N., Biegel, R.L., Scholz, C.H.: Micromechanics of rock friction 2: quantitative modeling of initial friction with contact theory. J. Geophys. Res. 97, 8965–8978 (1992)

    Article  ADS  Google Scholar 

  17. Cavarretta, I., Rocchi, I., Coop, M.R.: A new interparticle friction apparatus for granular materials. Can. Geotech. J. 48, 1829–1840 (2011)

    Article  Google Scholar 

  18. Cole, D.M., Uthus, L., Hopkins, M.A., Knapp, B.R.: Normal and sliding contact experiments on gneiss. Granul. Matter 12, 69–86 (2010). doi:10.1007/s10035-010-0165-z

    Article  Google Scholar 

  19. Gefken, P.R., Florence A.L., Sanai, M.: Spherical Waves in Saturated Sand. Indian Head Division—Naval Surface Warfare Center Report IHCR 96-55 (1996)

  20. Veyera, G.E.: Uniaxial Stress-Strain Behavior of Unsaturated Soils at High Strain Rates. Report WL-TR-93-3523, Wright Laboratory, Flight Dynamics Directorate, Tyndall AFB, FL (1994)

  21. Cooper, W.F.: Shear stress measurements during high-speed impacts with sand and glass beads. In: Shock Compression of Condensed Matter—2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conf. Proc., vol. 1426, pp. 1455–1458. (2011). doi:10.1063/1.3686556

  22. Uthus, L., Tutumluer, E., Horvli, I., Hoff, I.: Influence of grain shape and surface texture on the deformation properties of unbound aggregates in pavements. Int. J. Pavements Eng. 6, 75–87 (2007)

    Google Scholar 

  23. Uthus, L., Hopkins, M.A., Horvli, I.: Discrete element modelling of the resilient behaviour of unbound granular aggregates. Int. J. Pavement Eng. 9(6), 387–395 (2008)

    Article  Google Scholar 

  24. Cole, D.M., Ringelberg, D., Reynolds, C.M.: Small-scale mechanical properties of biopolymers. J. Geotech. Geoenviron. Eng. (2011). doi:10.1061/(ASCE)GT.1943-5606.0000680

  25. Andò, E., Hall, S.A., Viggiani, G., Desrues, J., Bésuelle, P.: Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech. 7, 1–13 (2012)

  26. Knuth, M., Hopkins, M.A., Cole, D.M.: Discrete element modeling of Vicksburg sand and lunar simulant. Proc. ASCE Earth Space 2010, 42–48 (2010)

    Google Scholar 

  27. Cole, D.M., Peters, J.F.: Grain-scale mechanics of geologic materials and lunar simulants under normal loading. Granul. Matter 10, 171–185 (2008). doi:10.1007/s10035-007-0066-y

    Article  Google Scholar 

  28. Peters, J.F., Berney, E.: Percolation threshold of sand-clay binary mixtures. J. Geotech. Geoenviron. Eng. 136, 310–318 (2010)

    Article  Google Scholar 

  29. Ji, S., Hanes, D.M., Shen, H.H.: Comparisons of physical experiment and discrete element simulations of sheared granular materials in an annular shear cell. Mech. Mater. 41, 764–776 (2009)

    Article  Google Scholar 

  30. Cole, D.M., Taylor, L.A., Liu, Y., Hopkins, M.A.: Grain-scale mechanical properties of lunar plagioclase and its simulant: initial experimental findings and modeling implications. In: Proceedings 12th Intl. Conf. on Engineering, Science, Construction, and Operations in Challenging Environments, pp. 74–83 (2010)

  31. Cole, D.M., Hopkins, M.A.: Contact mechanics of naturally occurring grains: experiments and discrete element modeling. In: Powders and Grains 2009: Proceedings of the 6th Intl. Conf. on Micromechanics of Granular Media. AIP Conf. Proc., vol. 1145, pp. 351–354. (2009). doi:10.1063/1.3179931

  32. Cole, D.M., Durell, G.D.: A dislocation-based analysis of strain history effects in ice. Philos. Mag. A 81, 1849–1872 (2001)

    Article  ADS  Google Scholar 

  33. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the financial support of ERDC’s Military Engineering Basic Research Program. This work was made possible by the excellent technical support of Douglas Punt, William Burch and John Gagnon of ERDC-CRREL. Helpful comments on the manuscript from Dr. Mark Hopkins of ERDC-CRREL are gratefully acknowledged.

Conflict of interest

This work was solely supported by the US Army Corps of Engineers-Engineer Research and Development Center under the Military Engineering Basic Research Program. The data presented herein have not been previously published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Cole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cole, D.M. Laboratory observations of frictional sliding of individual contacts in geologic materials. Granular Matter 17, 95–110 (2015). https://doi.org/10.1007/s10035-014-0526-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0526-0

Keywords

Navigation