Skip to main content
Log in

Breakage of an artificial crushable material under loading

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The mechanical behaviour of granular materials depends on their grading. Crushing of particles under compression or shear modifies the grain size distribution, with a tendency for the percentage of fine material to increase. It follows that the frictional properties of the material and the critical states are modified as a consequence of the changes in grain size distribution and the available range of packing densities. This paper illustrates an extended experimental investigation of the evolution of the grading of an artificial granular material, consisting of crushed expanded clay pellets under different loading conditions. The changes of grading of the material after isotropic, one-dimensional and constant mean effective stress triaxial compression were described using a single parameter based on the ratio of the areas under the current and an ultimate cumulative particle size distribution, which were both assumed to be consistent with self similar grading with varying fractal dimension. Relative breakage was related to the total work input for unit of volume. For poorly graded samples, the observed maximum rate of breakage is practically independent of initial uniformity. Further experiments at higher confining stress are required to investigate the mechanics of breakage of better graded samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Arslan, H., Baykal, G., Sture, S.: Analysis of the influence of crushing on the behaviour of granular materials under shear. Granul. Matter 11, 87–96 (2009)

    Article  Google Scholar 

  2. Casini, F., Viggiani, G.M.B.: Experimental investigation of the evolution of grading of an artificial material with crushable grains under different loading conditions. In: Proceedings of the International Symposium on Deformation Characteristics of Geomaterials IS-Seoul, pp. 957–964 (2011)

  3. Cecconi, M., Viggiani, G.: Physical and structural properties of a pyroclastic soft rock. In: Proceedings of the Second International Symposium on hard soils-soft rocks 1998, Naples, pp. 85–91 (1998)

  4. Cecconi, M., Viggiani, G., Rampello, S.: An experimental investigation of the mechanical behaviour of a pyroclastic soft rock. In: Proceedings of the Second International Symposium on Hard Soils-Soft Rocks 1998, Naples, pp. 473–482 (1998)

  5. Cheng, Y.P., Nakata, Y., Bolton, M.D.: Discrete element simulation of crushable soil. Géotechnique 53(7), 633–641 (2003)

    Article  Google Scholar 

  6. Cho, G.C., Dodds, L., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Eng. ASCE 132(5), 591–602 (2006)

    Article  Google Scholar 

  7. Coop, M.R., Sorensen, K.K., Bodas, Freitas T., Georgoutos, G.: Particle breakage during shearing of a carbonate sand. Géotechnique 54(3), 157–163 (2004)

    Article  Google Scholar 

  8. Einav, I.: Breakage mechanics. Part 1: theory. J. Mech. Phys. Solids 55(6), 1274–1297 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Ezaoui, A., Lecompte, T., Di Benedetto, H., Garcia, E.: Effects of various loading stress paths on the stress-strain properties and on crushability of an industrial soft granular material. Granul. Matter 13, 283–301 (2011)

  10. Fragaszy, R.J., Voss, M.E.: Undrained compression behavior of sand. J. Geotech. Eng. ASCE 112(3), 334–347 (1986)

    Article  Google Scholar 

  11. Gagliardi, C.: Comportamento meccanico di un materiale granulare a grani frantumabili. Università di Roma Tor Vergata, Master Thesis (2003)

  12. Han, G., Dusseault, M.B.: Description of fluid flow around a wellbore with stress-dependent porosity and permeability. J. Petrol. Sci. Eng. 40(1–2), 1–16 (2003)

    Article  Google Scholar 

  13. Hardin, B.O.: Crushing of soil particles. J. Geotech. Eng. ASCE 111(10), 1177–1192 (1985)

    Article  Google Scholar 

  14. Holm, T.A., Valsangkar, A.J.: Lightweight aggregate soil mechanics: properties and applications. ESCSI No. 6610 (2001)

  15. Imre, B.: Micro mechanical Analyses of Sturzstroms (Rock Avalanches) on Earth and Mars. Dissertation No. 18854, ETH Zurich (2010)

  16. Imre, B., Laue, J., Springman, S.M.: Fractal fragmentation of rocks within sturzstroms: insight derived from physical experiments within the ETH geotechnical drum centrifuge. Granul. Matter 12(3), 267–285 (2010)

    Article  Google Scholar 

  17. Lackenby, J., Indraratna, B., McDowell, G., Christie, D.: Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading. Géotechnique 57(6), 527–536 (2007)

    Article  Google Scholar 

  18. Lade, P.V., Yamamuro, J.A., Bopp, P.A.: Significance of particle crushing in granular materials. J. Geotech. Eng. ASCE 122(4), 309–316 (1996)

    Article  Google Scholar 

  19. Lee, K.L. & Farhoomand, I.: Compressibility and crushing of granular soils in anisotropic triaxial compression. Can. Geotech. J. 4(1), 68–86 (1967)

    Google Scholar 

  20. Lees, G.: A new method for determining the angularity of particles. Sedimentology 3(1), 2–21 (1964)

    Article  ADS  Google Scholar 

  21. Leu, J., Low, B., Zimmermann, A.: Effects of grain size distribution and confining stress on the mechanical behaviour of an artificial crushable material. Semester thesis, ETH Zurich (2011)

  22. Lobo, Guerrero S., Vallejo, L.E.: DEM analysis of crushing around driven piles in granular materials. Géotechnique 55(8), 617–623 (2005)

    Article  Google Scholar 

  23. Luzzani, L., Coop, M.R.: On the relationship between particle breakage and the critical state of sands. Soils Found. 42(2), 71–82 (2002)

    Article  Google Scholar 

  24. McDowell, G.R.: A physical justification for log(e)-log(\(\sigma \)) based on fractal crushing and particle kinematics. Géotechnique 55(9), 697–698 (2005)

    Google Scholar 

  25. McDowell, G.R., Bolton, M.D.: On the micromechanics of crushable aggregates. Géotechnique 40(5), 667–679 (1998)

    Google Scholar 

  26. McDowell, G.R., Bolton, M.D., Robertson, D.: The fractal crushing of granular materials. J. Mech. Phys. Solids 44(12), 2079–2102 (1996)

    Article  ADS  Google Scholar 

  27. Miura, K., Maeda, K., Furukawa, M., Toki, S.: Physical characteristics of sands with different primary properties. Soils Found. 37(3), 53–64 (1997)

    Article  Google Scholar 

  28. Nakata, Y., Hyde, A.F.L., Hyodo, M., Murata, H.: A probabilistic approach to sand particle crushing in the triaxial test. Géotechnique 49(5), 567–583 (1999)

    Article  Google Scholar 

  29. Okada, Y., Sassa, K., Fukuoka, H.: Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests. Eng. Geol. 75, 325–343 (2004)

    Article  Google Scholar 

  30. Palmer, A.C., Sanderson, T.J.O.: Fractal crushing of ice and brittle solids. Proc. R. Soc. Lond. 433–460 (1991).

  31. Papamichos, E., Vardoulakis, I., Ouadfel, H.: Permeability reduction due to grain crushing around a perforation. Int. J. Rock Mech. Mineral Sci. 30(7), 1223–1229 (1993)

    Article  Google Scholar 

  32. Peck, A.: Beginning GIMP: From Novice to Professional, 2nd Edn, p. 548. Apress (2008)

  33. Russell, A.R., Muir, Wood D.: Crushing of particles in idealised granular assemblies. J. Mech. Phys. Solids 57, 1293–1313 (2009)

    Article  ADS  MATH  Google Scholar 

  34. Sammis, C.G., King, G., Biegel, R.: The kinematics of gouge deformations. Pure Appl. Geophys. 125, 777–812 (1987)

    Article  ADS  Google Scholar 

  35. Simonini, P.: Analysis of behaviour of sand surrounding pile tips. J. Geotech. Eng. 122, 897–905 (1996)

    Article  Google Scholar 

  36. Tarantino, A., Hyde, A.F.L.: An experimental investigation of work dissipation in crushable materials. Géotechnique 55(8), 575–584 (2005)

    Article  Google Scholar 

  37. Turcotte, D.L.: Fractals and fragmentation. J. Geophys. Res. 91(B2), 1921–1926 (1986)

    Article  ADS  Google Scholar 

  38. Vallejo, L.E., Lobo-Guerrero, S., Hammer, K.: Degradation of a granular base under a flexible pavement: DEM simulation. Int. J. Geomech. 6(6), 435–439 (2006)

    Article  Google Scholar 

  39. Vallejo, L.E., Lobo-Guerrero, S.: The shear strength of granular materials containing dispersed oversized particles: DEM analysis. Int. J. Geotech. Eng. 6(3), 371–379 (2012)

    Article  Google Scholar 

  40. Vallejo, L.E., Lobo-Guerrero, S., Chik, Z.: A network of fractal force chains and their effect in granular materials undercompression. In: Levy-Vehel, J., Lutton, E. (eds.) Fractals in Engineering, pp. 67–80. Springer, Berlin (2005)

  41. Wanninger, F., Zwicker, P.: Effects of Grain Crushing on Compressibility of an Artificial Material. Semester Thesis, ETH Zurich (2010)

  42. White, D.J., Bolton, M.D.: Soil deformation around a displacement pile in sand. In: Proceedings of the International Conference on Physical Modelling in Geotechnics, St John’s, Newfoundland. Balkema, Rotterdam, pp. 649–654 (2002)

  43. Wood, D.M., Maeda, K.: Changing grading of soil: effect on critical states. Acta Geotech. 3, 3–14 (2008)

    Google Scholar 

  44. Yasufuku, N., Hyde, A.F.: Pile end bearing capacity in crushable sand. Géotechnique 45(4), 663–676 (1995)

    Article  Google Scholar 

  45. Zheghal, M.: The impact of grain crushing on road performance. Geotech. Geol. Eng. 27, 549–558 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Part of this research was carried out while the first Author was a post-doc at ETH Zurich. The authors wish to acknowledge Flavio Wanninger, Pascal Zwicker, Jacqueline Leu, Barbara Low, and Annika Zimmermann, who carried out some of the experimental work in partial fulfillment of the requirements for their Semester projects during their Masters studies at ETH Zürich, and the technical support of Ralf Herzog and Gabriele Peschke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Casini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casini, F., Viggiani, G.M.B. & Springman, S.M. Breakage of an artificial crushable material under loading. Granular Matter 15, 661–673 (2013). https://doi.org/10.1007/s10035-013-0432-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0432-x

Keywords

Navigation