Skip to main content
Log in

Evolution of solids fraction surfaces in tapping: simulation and dynamical systems analysis

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We report our findings on the evolution of solids fraction in a tapped system of inelastic, frictional spheres as a function of the applied acceleration obtained via discrete element simulations. Animations of the simulation data reveal the propagation of a wave initiated from the base that causes local rearrangements of the particles ultimately leading to the development of a dense microstructure. We also describe the analysis of dynamical models capable of predicting the simulated behavior, and advanced visualization techniques for revealing the dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. An X.Z. et al.: Micromechanical simulation and analysis of one-dimensional vibratory sphere packing. Phys. Rev. Lett. 95, 205502 (2005)

    Article  ADS  Google Scholar 

  2. Arsenovic D. et al.: Simulation study of granular compaction dynamics under vertical tapping. Phys. Rev. E 74, 061302 (2006)

    Article  ADS  Google Scholar 

  3. Barker G.C., Mehta A.: Vibrated powders: structure, correlations and dynamics. Phys. Rev. A 45(6), 3435–3446 (1992)

    Article  ADS  Google Scholar 

  4. Blackmore D., Samulyak R., Rosato A.: New mathematical models for particle flow dynamics. J. Nonlinear Math. Phys. 6, 198–221 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Blackmore D., Urban K., Rosato A.: Integrability analysis of regular and fractional Blackmore-Samulyak-Rosato fields. Condens. Matter Phys. 13(43403), 1–7 (2010)

    Google Scholar 

  6. Blackmore D., Rosato A., Tricoche X., Urban K., Ratnaswamy V.: Tapping dynamics for a column of particles and beyond. J. Mech. Mater. Struct. 6, 71–86 (2011)

    Article  Google Scholar 

  7. Blackmore D., Prykarpatsky A., Samoylenko V.: Nonlinear Dynamics Of Mathematical Physics: Spectral and Symplectic Integrability Analysis. World Scientific, New Jersey (2011)

    Book  Google Scholar 

  8. Blackmore, D., Rosato, A., Tricoche, X., Urban, K., Zuo, L.: Analysis, simulation and visualization of 1D tapping via reduced dynamical models (in preparation)

  9. Boutreux T., DeGennes P.G.: Compaction of granular mixtures: a free volume model. Physica A 244, 59–67 (1997)

    Article  ADS  Google Scholar 

  10. Carvente O., Ruiz-Suarez J.C.: Self assembling of dry and cohesive non-Brownian spheres. Phys. Rev. E 78, 011302 (2008)

    Article  ADS  Google Scholar 

  11. Eshuis P., van der Weele K., van der Meer D., Bos R., Lohse D.: Phase diagram of vertically shaken granular matter. Phys. Fluids 19(12), 123301 (2007)

    Article  ADS  Google Scholar 

  12. Fadeev L., Takhtajan L.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)

    Google Scholar 

  13. Hales T.: Cannonballs and honeycombs. Notices AMS 47(4), 440–449 (2005)

    MathSciNet  Google Scholar 

  14. Job S., Melo F., Sokolov A., Sen S.: Solitary wave trains in granular chains, experiments, theory and simulations. Granul. Matter 10, 13–20 (2007)

    Article  MATH  Google Scholar 

  15. Katok A., Hasselblatt B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  16. Knight J.B., Fandrich C.G., Lau C-N., Jaeger H.M., Nagel S.R.: Density relaxation in a vibrated granular material. Phys. Rev. E. 51(5), 3957 (1995)

    Article  ADS  Google Scholar 

  17. Kumar V.S., Kumaran V.: Voronoi cell volume distribution and configurational entropy of hard-spheres. J. Chem. Phys. 123, 114501 (2005)

    Article  ADS  Google Scholar 

  18. Linz S., Dohle A.: Minimal relaxation law for compaction of tapped granular matter. Phys. Rev. E 60(5), 5737–5741 (1999)

    Article  ADS  Google Scholar 

  19. Louge M.: Impact Parameters. Cornell University, Ithaca (1999)

    Google Scholar 

  20. MacKay R., Aubry S.: Proof of existence of breathers for time reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7, 1623–1643 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Nadler, S., Bonnefoy, O., Chaix, J.M.G., Thomas, G., Gelet, J.L.: Parametric study of horizontally vibrated grain packings: comparison between discrete element method and experimental results. Eur. Phys. J. E 34(7), art.no. 66 (2011)

    Google Scholar 

  22. Nesterenko V.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 733–743 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  23. Nesterenko V., Daraio C., Herbold E., Jin S.: Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95, 158702-1–158702-4 (2005)

    Article  ADS  Google Scholar 

  24. Nicodemi M., Coniglio A., Herrmann H.J.: Density fluctuations in a model for vibrated granular media. Phys. Rev. E 59(6), 6830–6837 (1999)

    Article  ADS  Google Scholar 

  25. Nowak E.R., Knight J.B., Povinelli M.L., Jaeger H.M., Nagel S.R.: Reversibility and irreversibility in the packing of vibrated granular materials. Powder Tech. 94(1), 79–83 (1997)

    Article  Google Scholar 

  26. Poggi P., Ruffo S.: Exact solutions in the FPU oscillator chain. Physica D 103, 251–272 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Porter M., Daraio C., Szelengowicz I., Herbold E., Kevrekidis P.: Highly nonlinear solitary waves in heterogeneous periodic granular media. Physica D 238, 666–676 (2009)

    Article  ADS  MATH  Google Scholar 

  28. Prykarpatsky A., Mykytiuk I.: Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  29. Pugnaloni L.A. et al.: Nonmonotonic reversible branch in four model granular beds subjected to vertical vibration. Phys. Rev. E 78, 051305 (2008)

    Article  ADS  Google Scholar 

  30. Ribiere P. et al.: Slow compaction of granular systems. J. Phys. Condens. Matter 17, S2743–S2754 (2005)

    Article  ADS  Google Scholar 

  31. Rosato A., Dybenko O., Ratnaswamy V., Horntrop D., Kondic L.: Microstructure development in tapped granular systems. Phys. Rev. E 81, 061301 (2010)

    Article  ADS  Google Scholar 

  32. Sano O.: Dilatancy, buckling, and undulations on a vertically vibrating granular layer. Phys. Rev. E 72(5), 1–7 (2005)

    Article  MathSciNet  Google Scholar 

  33. Sen S., Manciu M.: Solitary wave dynamics in generalized Hertz chains: an improved solution of the equation of motion. Phys. Rev. E 64, 056605-1–056605-4 (2001)

    Article  ADS  Google Scholar 

  34. Talbot J., Tarjus G., Viot P.: Aging and response properties in the parking lot model. Eur. Phys. J. E 5, 445–449 (2001)

    Article  Google Scholar 

  35. Walton O.R., Braun R.L.: Stress calculations for assemblies of inelastic spheres in uniform shear. Acta Mechanica 63(1-4), 73–86 (1986)

    Article  Google Scholar 

  36. Walton O.R.: Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres. Mech. Mater. 16, 239–247 (1993)

    Article  ADS  Google Scholar 

  37. Zolotaryuk, A., Savin, A., Christiansen, P.: From the FPU chain to biomolecular dynamics. In: Lecture Notes in Physics 542/2000, pp. 393–407 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Rosato.

Additional information

A.D. Rosato, D. Blackmore and X. Tricoche were partially supported by NSF grant CMMI-1029809. Computational resources were obtained from the Open Science Grid (under the support of the National Science Foundation and US Department of Energy’s Office of Science) and Engineering Computing at NJIT.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (MOV 723 kb)

ESM 2 (M4V 722 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratnaswamy, V., Rosato, A.D., Blackmore, D. et al. Evolution of solids fraction surfaces in tapping: simulation and dynamical systems analysis. Granular Matter 14, 163–168 (2012). https://doi.org/10.1007/s10035-012-0343-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0343-2

Mathematics Subject Classification

Keywords

Navigation