Skip to main content
Log in

The application of a three-surface kinematic hardening model to repeated loading of thinly surfaced pavements

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract.

This paper examines the application of kinematic hardening to modelling the behaviour of thinly surfaced pavements dominated by the clay subgrade. An existing three-surface kinematic hardening model has been found to predict too much shear strain and therefore too much settlement under repeated loading for certain stress conditions. Under some stress conditions, the model also predicts an accumulation of negative shear strain with increasing number of cycles of load, leading to a pavement rut depth which decreases with increasing numbers of cycles. Consequently, a new model has been developed by modifying the flow rule and hardening modulus. The new model requires 10 parameters, most of which can be determined directly from simple triaxial tests. The new model is validated against drained cyclic triaxial results in order to determine model parameters, and it is shown that the new model predicts better the accumulation of shear strain and the problem of accumulation of negative shear strain is eliminated. This new model is applied to the repeated loading of a thinly surfaced pavement and is seen to predict realistic resilient and permanent deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, S. F.: Géotechnique. 46(3), 383 (1996)

  2. Little, P. H.: Ph.D. Thesis. University of Nottingham (1993)

  3. Highways Agency, Design manual for roads and bridges: Volume 7: Pavement design and maintenance. HMSO (1994)

  4. Porter, O. J.: Proc. Highway Research Board 18(2), Washington, DC, 324 (1938)

    Google Scholar 

  5. Heukelom, W., Klomp, A. J. G.: Proc. of 1st Int. Conf. On Structural Design of Asphalt Pavements. Ann Abor, Michigan (1962)

  6. Powell, W. D., Potter, J. F., Mayhew, H. C., Nunn, M. E.: Transport and Road Research Laboratory 1132 (1984)

  7. Stallebrass, S. E.: Ph.D. Thesis. City University, London (1990)

  8. McDowell, G. R., Hau, K. W.: Granular Matter 6(1), 11 (2004)

  9. Cheung, L. W., Ph.D. Thesis. University of Nottingham (1994)

  10. Iwan, W. D.: Journal of Applied Mechanics, ASME 34, 612 (1967)

    Google Scholar 

  11. Mróz, Z.: Journal of the Mechanics and Physics of Solids 15, 163 (1967)

    Google Scholar 

  12. Prévost, J. H.: International Journal for Numerical and Analytical Methods in Geomechanics 1, 195 (1977)

  13. Prévost, J. H.: Journal of the Geotechnical Engineering Division, ASCE 104, 1075 (1978)

  14. Mróz, Z., Norris, V. A., Zienkiewicz, O. C.: Géotechnique 29(1), 1 (1979)

  15. Hashiguchi, K.: Proceedings of 5th International Conference on Numerical Methods in Geomechanics, Nagoya 285 (1985)

  16. K. Hashiguchi, International Journal of Plasticity 9, 721 (1993)

    Google Scholar 

  17. Dafalias, Y. F., Herrmann L. R.: Soil Mechanics – Transient and Cyclic Loads (eds. G. N. Pande & O. C. Zienkiewicz), p. 253. John Wiley& Sons Ltd, London (1982)

  18. Al-Tabbaa, A.: Ph.D. Thesis, University of Cambridge (1987)

  19. Roscoe, K. H., Burland, J. B.: Engineering Plasticity (eds. Heyman, J., Leckie, F. A.), p. 535. Cambridge University Press (1968)

  20. Stallebrass, S. E., Taylor, R. N.: Géotechnique 47(2), 235 (1997)

  21. Britto, A. M., Gunn, M. J.: Critical state soil mechanics via finite elements. Chichester: Ellis Horwood (1987)

  22. d’Almeida, J. C. G. R.: Ph.D. Thesis, University of Nottingham (1993)

  23. Brown, S. F., Pappin, J. W.: Transportation Research Record 810, Transportation Research Board, Washington DC, 17 (1981)

  24. McDowell, G. R., Hau, K. W.: Géotechnique 53(4), 433 (2003)

  25. Ohmaki, S.: 1st International Symposium on Numerical Models in Geomechanics, Zurich, 260 (1982)

  26. Alonso, E. E., Gens, A., Josa, A.: Géotechnique 40(3), 405 (1990)

    Google Scholar 

  27. Jâky, J.: Magyar Mérnök és Epitész-Egylet Közlönye (J. of the Union of Hungarian Engineers and Architects), 355 (1944)

  28. Brooker, E. W., Ireland, H. O.: Canadian Geotechnical Journal 2(1), 1 (1965)

    Google Scholar 

  29. Bolton, M. D.: Transport and Road Research Laboratory Contractor Report 270, London (1991)

  30. Simpson, B.: Géotechnique 42(4), 541 (1992)

  31. Potts, D. M., Zdravković, L.: Finite element analysis in geotechnical engineering: theory. London: Thomas Telford (1999)

  32. Sheng, D., Sloan, S. W., Yu, H-S.: Computational mechanics 26 185 (2000)

    Google Scholar 

  33. Matsuoka, H., Nakai, T.: Proceedings of Japanese Society of Civil Engineering 232, 59 (1974)

  34. Hau, K. W.: Ph.D. Thesis, University of Nottingham (2003)

  35. Yu, H-S.: Journal for Numerical and Analytical Methods in Geomechanics 22, 621 (1998)

    Google Scholar 

  36. Yu, H-S., Khong, C. D.: Proc. 3rd International Symposium on 3D Finite Elements for Pavement Analysis, Design and Research, Amsterdam, 253 (2002)

  37. Hau, K. W., McDowell, G. R.: Proc. ICE Geotechnical Engineering, 158(GE1), 45 (2005)

  38. Dawson, A. R., Plaistow, L. C.: Proc. European Symposium on Flexible Pavements, Lisbon, Session 4: Flexible Pavement Design, 1 (1993)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hau, K., McDowell, G., Zhang, G. et al. The application of a three-surface kinematic hardening model to repeated loading of thinly surfaced pavements. Granular Matter 7, 145–156 (2005). https://doi.org/10.1007/s10035-005-0199-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-005-0199-9

Keywords

Navigation