Skip to main content
Log in

Interplay of Climate, Fires, Floods, and Anthropogenic Impacts on the Peat Formation and Carbon Dynamic of Coastal and Inland Tropical Peatlands in West Kalimantan, Indonesia

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The function of tropical peatland as a carbon sink is a balance between peat accumulation and peat loss; however, various interacting factors are involved affecting this process. In this study, we collected and intensively radiocarbon dated peat cores from two peat domes, visualized their cross-sectional profiles of geochemical properties, and developed three macrocharcoal records from each peat dome. We find that the young (4500 y calBP) and shallow (6 m) coastal peat has a simple and linear age–depth relationship, showing stable accumulation of carbon during the late Holocene. In contrast, the older (ca. 40,000 y cal BP) and deeper (15 m) inland peat shows a more complex history, where we observed age reversals and hiatuses, likely caused by climate variability from the Last Glacial Maximum (LGM) to the Holocene. The charcoal record reveals a continuous presence of low-severity fire as indicated by charcoal morphotypes, though fire frequency increased after agriculture was established. An age reversal during the LGM was likely caused by a flood. Two periods of hiatuses occurred, each several millennia in length, at the end of the LGM and during the early Holocene. One cause of the hiatuses may have been a climatically halted peat formation from low precipitation and cooler climate during the LGM. Another cause may have been that severe fires consumed thousands of years of accumulated peat. If the hiatuses were entirely due to fire, the carbon released from these paleo-fire events (600 t C ha−1) suggests several times the impact of the most intense modern peat fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

All data will be made available on the Neotoma Paleoecology Database upon publication.

References

  • Anda M, Ritung S, Suryani E, Sukarman Hikmat M, Yatno E, Mulyani A, Subandiono RE, Suratman Husnain. 2021. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma 402:115235.

    Article  CAS  Google Scholar 

  • Anshari G, Peter Kershaw A, van der Kaars S. 2001. A Late Pleistocene and Holocene pollen and charcoal record from peat swamp forest, Lake Sentarum Wildlife Reserve, West Kalimantan, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 171:213–228.

    Article  Google Scholar 

  • Anshari G, Peter Kershaw A, Van Der Kaars S, Jacobsen G. 2004. Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan, Indonesia. J Quaternary Sci 19:637–655.

    Article  Google Scholar 

  • Arif, M. 2019. Awal kehidupan masyarakat transmigrasi di Rasau Jaya 1. Masa: Journal of History 1.

  • Ballhorn U, Siegert F, Mason M, Limin S. 2009. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proceedings of the National Academy of Sciences 106:21213–21218.

    Article  CAS  Google Scholar 

  • Biagioni S, Krashevska V, Achnopha Y, Saad A, Sabiham S, Behling H. 2015. 8000 years of vegetation dynamics and environmental changes of a unique inland peat ecosystem of the Jambi Province in Central Sumatra, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 440:813–829.

    Article  Google Scholar 

  • Bird MI, Taylor D, Hunt C. 2005. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? Quaternary Science Reviews 24:2228–2242.

    Article  Google Scholar 

  • Blaauw M, Christen JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6:457–474.

    Article  Google Scholar 

  • Blum MD, Törnqvist TE. 2000. Fluvial responses to climate and sea-level change: a review and look forward: Fluvial responses to climate and sea-level change. Sedimentology 47:2–48.

    Article  Google Scholar 

  • Carolin SA, Cobb KM, Lynch-Stieglitz J, Moerman JW, Partin JW, Lejau S, Malang J, Clark B, Tuen AA, Adkins JF. 2016. Northern Borneo stalagmite records reveal West Pacific hydroclimate across MIS 5 and 6. Earth and Planetary Science Letters 439:182–193.

    Article  CAS  Google Scholar 

  • Cochrane MA. 2003. Fire science for rainforests. Nature 421:913–919. https://doi.org/10.1038/nature01437.

    Article  CAS  PubMed  Google Scholar 

  • Cole LES, Bhagwat SA, Willis KJ. 2019. Fire in the swamp forest: Palaeoecological insights into natural and human-induced burning in intact tropical peatlands. Frontiers in Forests and Global Change 2:48.

    Article  Google Scholar 

  • Crema ER, Bevan A. 2021. Inference from large sets of radiocarbon dates: Software and methods. Radiocarbon 63:23–39. https://doi.org/10.1017/RDC.2020.95.

    Article  Google Scholar 

  • Datta A, Krishnamoorti R. 2022. Understanding the Greenhouse Gas Impact of Deforestation Fires in Indonesia and Brazil in 2019 and 2020. Frontiers in Climate 4:799632.

    Article  Google Scholar 

  • Dohong A, Aziz AA, Dargusch P. 2017. A review of the drivers of tropical peatland degradation in South-East Asia. Land Use Policy 69:349–360. https://doi.org/10.1016/j.landusepol.2017.09.035.

    Article  Google Scholar 

  • Dommain R, Couwenberg J, Joosten H. 2011. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quaternary Science Reviews 30:999–1010. https://doi.org/10.1016/j.quascirev.2011.01.018.

    Article  Google Scholar 

  • Dunnette PV, Higuera PE, McLauchlan KK, Derr KM, Briles CE, Keefe MH. 2014. Biogeochemical impacts of wildfires over four millennia in a Rocky Mountain subalpine watershed. New Phytol 203:900–912.

    Article  CAS  PubMed  Google Scholar 

  • Dussol L, Vannière B, Purdue L, Orange F, Testé M, Castanet C, Garnier A, Lemonnier E, Théry-Parisot I. 2021. How to highlight slash-and-burn agriculture in ancient soils? A modern baseline of agrarian fire imprint in the Guatemalan lowlands using charcoal particle analysis. Journal of Archaeological Science: Reports 35:102725. https://doi.org/10.1016/j.jasrep.2020.102725.

    Article  Google Scholar 

  • Gallego-Sala AV, Charman DJ, Brewer S, Page SE, Prentice IC, Friedlingstein P, Moreton S, Amesbury MJ, Beilman DW, Björck S, Blyakharchuk T, Bochicchio C, Booth RK, Bunbury J, Camill P, Carless D, Chimner RA, Clifford M, Cressey E, Courtney-Mustaphi C, Vleeschouwer FD, de Jong R, Fialkiewicz-Koziel B, Finkelstein SA, Garneau M, Githumbi E, Hribjlan J, Holmquist J, Hughes PDM, Jones C, Jones MC, Karofeld E, Klein ES, Kokfelt U, Korhola A, Lacourse T, Roux GL, Lamentowicz M, Large D, Lavoie M, Loisel J, Mackay H, MacDonald GM, Makila M, Magnan G, Marchant R, Marcisz K, Cortizas AM, Massa C, Mathijssen P, Mauquoy D, Mighall T, Mitchell FJG, Moss P, Nichols J, Oksanen PO, Orme L, Packalen MS, Robinson S, Roland TP, Sanderson NK, Sannel ABK, Silva-Sánchez N, Steinberg N, Swindles GT, Turner TE, Uglow J, Väliranta M, van Bellen S, van der Linden M, van Geel B, Wang G, Yu Z, Zaragoza-Castells J, Zhao Y. 2018. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change. https://doi.org/10.1038/s41558-018-0271-1.

    Article  Google Scholar 

  • Gao Y, Dong G, Yang X, Chen F. 2020. A review on the spread of prehistoric agriculture from southern China to mainland Southeast Asia. Science China Earth Sciences. https://doi.org/10.1007/s11430-019-9552-5.

    Article  Google Scholar 

  • Garcin Y, Schefuß E, Dargie GC, Hawthorne D, Lawson IT, Sebag D, Biddulph GE, Crezee B, Bocko YE, Ifo SA, Mampouya Wenina YE, Mbemba M, Ewango CEN, Emba O, Bola P, Kanyama Tabu J, Tyrrell G, Young DM, Gassier G, Girkin NT, Vane CH, Adatte T, Baird AJ, Boom A, Gulliver P, Morris PJ, Page SE, Sjögersten S, Lewis SL. 2022. Hydroclimatic vulnerability of peat carbon in the central Congo Basin. Nature. https://doi.org/10.1038/s41586-022-05389-3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gastaldo RA. 2010. Peat or no peat: Why do the Rajang and Mahakam Deltas differ? International Journal of Coal Geology, Hermann W. Pfefferkorn Commemorative 83:162–172. https://doi.org/10.1016/j.coal.2010.01.005.

    Article  CAS  Google Scholar 

  • Gin OK. 2015. Borneo in the early modern period: c late fourteenth to c late eighteenth centuries. Early Modern Southeast Asia 1350–1800, . Routledge: London. pp 116–130.

    Google Scholar 

  • Global Forest Watch. 2018. Indonesia Peat Land [WWW Document]. http://data.globalforestwatch.org/datasets/d52e0e67ad21401cbf3a2c002599cf58_10?geometry=79.244%2C-8.804%2C145.997%2C6.528.

  • Hapsari KA, Biagioni S, Jennerjahn TC, Reimer PM, Saad A, Achnopha Y, Sabiham S, Behling H. 2017. Environmental dynamics and carbon accumulation rate of a tropical peatland in Central Sumatra, Indonesia. Quaternary Science Reviews 169:173–187. https://doi.org/10.1016/j.quascirev.2017.05.026.

    Article  Google Scholar 

  • Hapsari KA, Jennerjahn T, Nugroho SH, Yulianto E, Behling H. 2022. Sea level rise and climate change acting as interactive stressors on development and dynamics of tropical peatlands in coastal Sumatra and South Borneo since the Last Glacial Maximum. Global Change Biology 28:3459–3479. https://doi.org/10.1111/gcb.16131.

    Article  CAS  PubMed  Google Scholar 

  • Hidayat H, Teuling AJ, Vermeulen B, Taufik M, Kastner K, Geertsema TJ, Bol DCC, Hoekman DH, Haryani GS, Van Lanen HAJ, Delinom RM, Dijksma R, Anshari GZ, Ningsih NS, Uijlenhoet R, Hoitink AJF. 2017. Hydrology of inland tropical lowlands: the Kapuas and Mahakam wetlands. Hydrol. Earth Syst. Sci. 21:2579–2594. https://doi.org/10.5194/hess-21-2579-2017.

    Article  Google Scholar 

  • Higuera PE, Peters ME, Brubaker LB, Gavin DG. 2007. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quaternary Science Reviews 26:1790–1809. https://doi.org/10.1016/j.quascirev.2007.03.010.

    Article  Google Scholar 

  • Hodgkins SB, Richardson CJ, Dommain R, Wang H, Glaser PH, Verbeke B, Winkler BR, Cobb AR, Rich VI, Missilmani M, Flanagan N, Ho M, Hoyt AM, Harvey CF, Vining SR, Hough MA, Moore TR, Richard PJH, Cruz FBDL, Toufaily J, Hamdan R, Cooper WT, Chanton JP. 2018. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-06050-2.

    Article  CAS  Google Scholar 

  • Hope G, Chokkalingam U, Anwar S. 2005. The stratigraphy and fire history of the Kutai Peatlands, Kalimantan, Indonesia. Quaternary Research, Late Quaternary Tropical Ecosystem Dynamics 64:407–417. https://doi.org/10.1016/j.yqres.2005.08.009.

    Article  Google Scholar 

  • Huber UM, Markgraf V. 2003. Holocene fire frequency and climate change at Rio Rubens Bog, southern Patagonia. Fire and Climatic Change in Temperate Ecosystems of the Western Americas, . Springer: Cham. pp 357–380.

    Chapter  Google Scholar 

  • Huber UM, Markgraf V, Schäbitz F. 2004. Geographical and temporal trends in Late Quaternary fire histories of Fuego-Patagonia, South America. Quaternary Science Reviews 23:1079–1097. https://doi.org/10.1016/j.quascirev.2003.11.002.

    Article  Google Scholar 

  • Hunt CO, Premathilake R. 2012. Early Holocene vegetation, human activity and climate from Sarawak, Malaysian Borneo. Quaternary International 249:105–119. https://doi.org/10.1016/j.quaint.2011.04.027.

    Article  Google Scholar 

  • Hunt CO, Gilbertson DD, Rushworth G. 2012. A 50,000-year record of late Pleistocene tropical vegetation and human impact in lowland Borneo. Quaternary Science Reviews 37:61–80. https://doi.org/10.1016/j.quascirev.2012.01.014.

    Article  Google Scholar 

  • Kershaw P, Penny D, van der Kaars S, Anshari G, Thamotherampillai A. 2001. Vegetation and climate in lowland southeast Asia at the Last Glacial Maximum. pp. 227–236.

  • Konecky B, Russell J, Bijaksana S. 2016. Glacial aridity in central Indonesia coeval with intensified monsoon circulation. Earth and Planetary Science Letters 437:15–24. https://doi.org/10.1016/j.epsl.2015.12.037.

    Article  CAS  Google Scholar 

  • Konecny K, Ballhorn U, Navratil P, Jubanski J, Page SE, Tansey K, Hooijer A, Vernimmen R, Siegert F. 2016. Variable carbon losses from recurrent fires in drained tropical peatlands. Global Change Biology 22:1469–1480. https://doi.org/10.1111/gcb.13186.

    Article  PubMed  Google Scholar 

  • Krisnawati H, Adinugroho WC, Imanuddin R, Suyoko Weston CJ, Volkova L. 2021. Carbon balance of tropical peat forests at different fire history and implications for carbon emissions. Science of the Total Environment 779:146365. https://doi.org/10.1016/j.scitotenv.2021.146365.

    Article  CAS  PubMed  Google Scholar 

  • Krüger JP, Leifeld J, Glatzel S, Szidat S, Alewell C. 2015. Biogeochemical indicators of peatland degradation – a case study of a temperate bog in northern Germany. Biogeosciences 12:2861–2871.

    Article  Google Scholar 

  • Loisel J, Gallego-Sala AV, Amesbury MJ, Magnan G, Anshari G, Beilman D, Benavides JC, Blewett J, Camill P, Charman DJ, Chawchai S, Hedgpeth A, Kleinen T, Korhola A, Large D, Mansilla CA, Müller J, van Bellen S, West JB, Yu Z, Bubier J, Garneau M, Moore T, Sannel ABK, Page S, Väliranta M, Bechtold M, Brovkin V, Cole LES, Chanton JP, Christensen TR, Davies MA, De Vleeschouwer F, Finkelstein SA, Frolking S, Galka M, Gandois L, Girkin N, Harris LI, Heinemeyer A, Hoyt AM, Jones MC, Joos F, Juutinen S, Kaiser K, Lacourse T, Lamentowicz M, Larmola T, Leifeld J, Lohila A, Milner AM, Minkkinen K, Moss P, Naafs BDA, Nichols J, O'Donnell J, Payne R, Philben M, Piilo S, Quillet A, Ratnayake AS, Roland T, Sjögersten S, Sonnentag O, Swindles GT, Swinnen W, Talbot J, Treat C, Valach AC, Wu J. 2020. Expert assessment of future vulnerability of the global peatland carbon sink.

  • Ma T, Rolett BV, Zheng Z, Zong Y. 2020. Holocene coastal evolution preceded the expansion of paddy field rice farming. Proceedings of the National Academy of Sciences 117:24138–24143. https://doi.org/10.1073/pnas.1919217117.

    Article  CAS  Google Scholar 

  • Martono M. 2016. Seasonal and Inter Annual Variation of Sea Surface Temperature in the Indonesian Waters. Forum Geografi 30:120–129.

    Article  Google Scholar 

  • Mohtadi M, Steinke S, Lückge A, Groeneveld J, Hathorne EC. 2010. Glacial to Holocene surface hydrography of the tropical eastern Indian Ocean. Earth and Planetary Science Letters 292:89–97. https://doi.org/10.1016/j.epsl.2010.01.024.

    Article  CAS  Google Scholar 

  • Morley RJ. 2013. Cenozoic ecological history of South East Asian peat mires based on the comparison of coals with present day and Late Quaternary peats. Journal of Limnology 72:e3.

    Article  Google Scholar 

  • Osaki M, Tsuji N. 2016. Tropical peatland ecosystems. Springer.

    Book  Google Scholar 

  • Page SE, Hooijer A. 2016. In the line of fire: the peatlands of Southeast Asia. Philosophical Transactions of the Royal Society B: Biological Sciences 371:20150176. https://doi.org/10.1098/rstb.2015.0176.

    Article  CAS  Google Scholar 

  • Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A, Limin S. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65. https://doi.org/10.1038/nature01131.

    Article  CAS  PubMed  Google Scholar 

  • Page SE, Wust RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH. 2004. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J. Quaternary Sci. 19:625–635. https://doi.org/10.1002/jqs.884.

    Article  Google Scholar 

  • Page S, Hoscilo A, Langner A, Tansey K, Siegert F, Suwido L, Rieley J. 2010. Tropical peatland fires in Southeast Asia. In: Cochrane MA, Ed. Tropical Fire Ecology: Climate Change, . Springer Science & Business Media: Land Use and Ecosystem Dynamics. pp 263–287.

    Google Scholar 

  • Page SE, Rieley JO, Banks CJ. 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology 17:798–818. https://doi.org/10.1111/j.1365-2486.2010.02279.x.

    Article  Google Scholar 

  • Partin JW, Cobb KM, Adkins JF, Clark B, Fernandez DP. 2007. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum. Nature 449:452–455. https://doi.org/10.1038/nature06164.

    Article  CAS  PubMed  Google Scholar 

  • Posa MRC, Wijedasa LS, Corlett RT. 2011. Biodiversity and Conservation of Tropical Peat Swamp Forests. BioScience 61:49–57. https://doi.org/10.1525/bio.2011.61.1.10.

    Article  Google Scholar 

  • Prasojo ZH. 2017. Religious and Cultural Existences Within the Communities of Upper Kapuas Riverside of West Kalimantan. Al-Albab 6:197. https://doi.org/10.24260/alalbab.v6i2.931.

    Article  Google Scholar 

  • Pyatt FB, Wilson B, Barker GW. 2005. The chemistry of tree resins and ancient rock paintings in the Niah Caves, Sarawak (Borneo): some evidence of rain forest management by early human populations. Journal of Archaeological Science 32:897–901. https://doi.org/10.1016/j.jas.2005.01.010.

    Article  Google Scholar 

  • Ramdzan KNM, Moss PT, Heijnis H, Harrison ME, Yulianti N. 2022. Application of palaeoecological and geochemical proxies in the context of tropical peatland degradation and restoration: A review for Southeast Asia. Wetlands 42:95. https://doi.org/10.1007/s13157-022-01618-7.

    Article  Google Scholar 

  • Reynolds T, Barker G. 2014. Reconstructing Late Pleistocene climates, landscapes, and human activities in northern Borneo from excavations in the Niah Caves.

  • Ribeiro K, Pacheco FS, Ferreira JW, de Sousa-Neto ER, Hastie A, Krieger Filho GC, Alvala PC, Forti MC, Ometto JP. 2021. Tropical peatlands and their contribution to the global carbon cycle and climate change. Global Change Biology 27:489–505. https://doi.org/10.1111/gcb.15408.

    Article  PubMed  Google Scholar 

  • Ritung S, Wahyunto W, Nugroho K, Sukarman S, Hikmatullah H, Suparto S, Tafakrenanto C. 2011. Peta Lahan Gambut Indonesia Skala 1:250.000, December 2. ed. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Badan Penelitian dan Pengembangan Pertanian, Bogor.

  • Rodysill JR, Russell JM, Crausbay SD, Bijaksana S, Vuille M, Edwards RL, Cheng H. 2013. A severe drought during the last millennium in East Java, Indonesia. Quaternary Science Reviews 80:102–111. https://doi.org/10.1016/j.quascirev.2013.09.005.

    Article  Google Scholar 

  • RSS GmbH, 2018. Kapuas Hulu peat remapping final report: Mapping peat extent and depth of 16 Peat Hydrological Units within the Kapuas Hulu Basin (No. 12.2216.0–001.00). Remote Sensing Solution GmbH, FORCLIME.

  • Ruddiman WF. 2003. The Anthropogenic Greenhouse Era Began Thousands of Years Ago. Climatic Change 61:261–293. https://doi.org/10.1023/B:CLIM.0000004577.17928.fa.

    Article  CAS  Google Scholar 

  • Ruwaimana M, Anshari GZ, Silva LCR, Gavin DG. 2020. The oldest extant tropical peatland in the world: a major carbon reservoir for at least 47,000 years. Environ Res Lett. https://doi.org/10.1088/1748-9326/abb853.

    Article  Google Scholar 

  • Septiyani D. 2014. Para transmigran di Desa Rasau Jaya I Kabupaten Kubu Raya Kalimantan Barat Tahun 1971–1979. Journal of Indonesian History 3.

  • Sirrullah S bin S. 2019. Sejarah Kesultanan Kadriah Pontianak 1778–2017 M. UIN Sunan Ampel Surabaya.

  • Smith FA, Smith HF. 2011. A shadowy state in Borneo: where was Tanjungpura. Borneo Research Bulletin 42.

  • Spiker EC, Hatcher PG. 1984. Carbon isotope fractionation of sapropelic organic matter during early diagenesis. Organic Geochemistry 5:283–290. https://doi.org/10.1016/0146-6380(84)90016-0.

    Article  CAS  Google Scholar 

  • Suprianto B, Prasojo ZH, Witro D. 2021. The History of Islamic Kingdoms in Kapuas Hulu District: A Manuscript Translation of Pangeran Kesoema Anom Soeria Negara. Heritage of Nusantara: International Journal of Religious Literature and Heritage 10:274–309.

    Google Scholar 

  • Treat CC, Kleinen T, Broothaerts N, Dalton AS, Dommain R, Douglas TA, Drexler JZ, Finkelstein SA, Grosse G, Hope G. 2019. Widespread global peatland establishment and persistence over the last 130,000 y. Proceedings of the National Academy of Sciences 116:4822–4827.

    Article  CAS  Google Scholar 

  • Tuinenburg OA, Theeuwen JJE, Staal A. 2020. High-resolution global atmospheric moisture connections from evaporation to precipitation. Earth System Science Data 12:3177–3188. https://doi.org/10.5194/essd-12-3177-2020.

    Article  Google Scholar 

  • Turetsky M, Wieder K, Halsey L, Vitt D. 2002. Current disturbance and the diminishing peatland carbon sink. Geophysical Research Letters. https://doi.org/10.1029/2001GL014000.

    Article  Google Scholar 

  • Usup A, Hashimoto Y, Takahashi H, Hayasaka H. 2004. Combustion and thermal characteristics of peat fire in tropical peatland in Central Kalimantan, Indonesia. Tropics 14:1–19. https://doi.org/10.3759/tropics.14.1.

    Article  Google Scholar 

  • Wen X, Liu Z, Wang S, Cheng J, Zhu J. 2016. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years. Nat Commun 7:11999. https://doi.org/10.1038/ncomms11999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wüst RAJ, Bustin RM, Lavkulich LM. 2003. New classification systems for tropical organic-rich deposits based on studies of the Tasek Bera Basin, Malaysia. Catena 53:133–163.

    Article  Google Scholar 

  • Wüst RA, Jacobsen GE, von der Gaast H, Smith AM. 2008. Comparison of radiocarbon ages from different organic fractions in tropical peat cores: insights from Kalimantan, Indonesia. Radiocarbon 50:359–372.

    Article  Google Scholar 

  • Yokelson RJ, Saharjo BH, Stockwell CE, Putra EI, Jayarathne T, Akbar A, Albar I, Blake DR, Graham LLB, Kurniawan A, Meinardi S, Ningrum D, Nurhayati AD, Saad A, Sakuntaladewi N, Setianto E, Simpson IJ, Stone EA, Sutikno S, Thomas A, Ryan KC, Cochrane MA (2022) Tropical peat fire emissions: 2019 field measurements in Sumatra and Borneo and synthesis with previous studies. Atmos Chem Phys 22:10173–10194.

  • Young DM, Baird AJ, Gallego-Sala AV, Loisel J. 2021. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci Rep 11:9547. https://doi.org/10.1038/s41598-021-88766-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu ZC. 2012. Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085. https://doi.org/10.5194/bg-9-4071-2012.

    Article  CAS  Google Scholar 

  • Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. 2010. Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters 37(13):L13402.

    Article  Google Scholar 

  • Yulianto E, Rahardjo AT, Noeradi D, Siregar DA, Hirakawa K. 2005. A Holocene pollen record of vegetation and coastal environmental changes in the coastal swamp forest at Batulicin, South Kalimantan, Indonesia. Journal of Asian Earth Sciences 25:1–8.

    Article  Google Scholar 

  • Zheng Z, Ma T, Roberts P, Li Z, Yue Y, Peng H, Huang K, Han Z, Wan Q, Zhang Y, Zhang X, Zheng Y, Saito Y. 2021. Anthropogenic impacts on Late Holocene land-cover change and floristic biodiversity loss in tropical southeastern Asia. Proceedings of the National Academy of Sciences 118:e2022210118. https://doi.org/10.1073/pnas.2022210118.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the dedicated efforts of lab and field crew from Universitas Tanjungpura (Nung, Putri, Rabbirl, Jemani, and other students), residents of Putussibau (Hendro and the crew), and University of Oregon (Rose Nittler—lab technician). We thank Kathryn Elder (Woods Hole Oceanographic Institute) for interpreting the maximum limiting ages of the radiocarbon measurements.

Funding

This research was funded by the National Science Foundation award 1561099, an AMINEF Fulbright Doctoral Scholarship, an IPCC Scholarship funded by Prince Albert II of Monaco Foundation, an AICEF (American Indonesian Cultural & Educational Foundation) Overseas Travel Grant, the University of Oregon, and Universitas Atma Jaya Yogyakarta. Peat cores were collected in a responsible manner, with permission from local authorities and in accordance with local laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Ruwaimana.

Additional information

Author Contribution All authors conceptualized the study, devised the methodology, and conducted the field investigation. DGG and GZA supervised and provided resources. DGG and MR acquired the funding. MR curated, analyzed, and visualized the data. MR wrote the original draft, and all authors discussed the results and contributed to the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8585 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruwaimana, M., Gavin, D.G. & Anshari, G. Interplay of Climate, Fires, Floods, and Anthropogenic Impacts on the Peat Formation and Carbon Dynamic of Coastal and Inland Tropical Peatlands in West Kalimantan, Indonesia. Ecosystems 27, 361–375 (2024). https://doi.org/10.1007/s10021-023-00882-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-023-00882-w

Keywords

Navigation