Skip to main content

Advertisement

Log in

Identifying Carbon-Degrading Enzyme Activities in Association with Soil Organic Carbon Accumulation Under Land-Use Changes

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Land degradation and restoration strongly influence terrestrial soil organic carbon (SOC) dynamics. However, the underlying mechanisms are not well understood. Here, based on a meta-analysis of 803 observations from 138 studies worldwide, our data analyses suggest that C-degrading enzymes play a crucial role in regulating SOC dynamics under land degradation and restoration. Our result showed that decreased cellulase activity but unchanged ligninase activity was associated with land degradation, whereas higher increased cellulase activity compared with ligninase activity was associated with land restoration. Consequently, the ligninase-to-cellulase ratios were higher under land degradation and lower under land restoration. Also, the specific enzyme activity (the amount of enzyme produced per unit microbial biomass) was greater under land degradation but lower under land restoration. By comparison with the short-term (≤ 30) land degradation, the long-term (> 30 years) land degradation significantly increased the ligninase-to-cellulase ratio. On the contrary, the long-term land restoration exerted a more negative effect on the ligninase-to-cellulase ratio. The increases in the specific enzyme activity and ligninase-to-cellulase ratio were tightly correlated with decreases in SOC content under land degradation. A similar correlation was also found between decreases in specific enzyme activity and ligninase-to-cellulase ratio and increases in SOC content under land restoration. Overall, the decrease of SOC storage under land degradation is not only due to the low plant inputs, but also likely because of the accelerated degradation of recalcitrant C pools. However, the reverse applies for land restoration. The novel insights provided by our results contribute to the understanding of microbial mechanisms underlying the changes in SOC accumulation in response to land-use changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arias-Ortiz A, Masque P, Glass L, Benson L, Kennedy H, Duarte CM, Garcia-Orellana J, Benitez-Nelson CR, Humphries MS, Ratefinjanahary I, Ravelonjatovo J, Lovelock CE. 2021. Losses of soil organic carbon with deforestation in mangroves of Madagascar. Ecosystems 24:1–19.

    Article  CAS  Google Scholar 

  • Bahri H, Rasse DP, Rumpel C, Dignac MF, Bardoux G, Mariotti A. 2008. Lignin degradation during a laboratory incubation followed by 13C isotope analysis. Soil Biol Biochem 40:1916–1922.

    Article  CAS  Google Scholar 

  • Bai E, Li S, Xu W, Li W, Dai W, Jiang P. 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol 199:431–440.

    Article  CAS  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A. 2013. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol Biochem 58:216–433.

    Article  CAS  Google Scholar 

  • Carreira JA, Viñegla B, García-Ruiz R, Ochoa V, Hinojosa MB. 2008. Recovery of biochemical functionality in polluted flood-plain soils: the role of microhabitat differentiation through revegetation and rehabilitation of the river dynamics. Soil Biol Biochem 40:2088–2097.

    Article  CAS  Google Scholar 

  • Cavalcanti RQ, Rolim MM, de Lima RP, Tavares UE, Pedrosa EMR, Cherubin MR. 2020. Soil physical changes induced by sugarcane cultivation in the Atlantic Forest biome, northeastern Brazil. Geoderma 370:114.

    Article  Google Scholar 

  • Chen J, Elsgaard L, van Groenigen KJ, Olesen JE, Liang Z, Jiang Y, Laerke PE, Zhang Y, Luo Y, Hungate BA, Sinsabaugh RL, Jorgensen U. 2020. Soil carbon loss with warming: New evidence from carbon-degrading enzymes. Global Change Biol 26:1944–1952.

    Article  Google Scholar 

  • Chen J, Luo Y, Garcia-Palacios P, Cao J, Dacal M, Zhou X, Li J, Xia J, Niu S, Yang H, Shelton S, Guo W, van Groenigen KJ. 2018a. Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration. Global Change Biol 24:4816–4826.

    Article  Google Scholar 

  • Chen J, Luo Y, van Groenigen KJ, Hungate BA, Cao J, Zhou X, Wang R. 2018b. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci Adv 4

  • Chen J, Sinsabaugh RL. 2021. Linking microbial functional gene abundance and soil extracellular enzyme activity: Implications for soil carbon dynamics. Global Change Biol 27:1322–1325.

    Article  CAS  Google Scholar 

  • Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix Michelle L, Wall DH, Parton WJ. 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–779.

    Article  CAS  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biol 19:988–995.

    Article  Google Scholar 

  • Cusack DF, Silver WL, Torn MS, Burton SD, Firestone MK. 2011. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92:621–632.

    Article  PubMed  Google Scholar 

  • Davari M, Gholami L, Nabiollahi K, Homaee M, Jafari HJ. 2020. Deforestation and cultivation of sparse forest impacts on soil quality (case study: West Iran Baneh). Soil Tillage Res 198:104.

    Article  Google Scholar 

  • de Oliveira Silva É, de Medeiros EV, Duda GP, Junior MAL, Brossard M, de Oliveira JB, dos Santos UJ, Hammecker C. 2019. Seasonal effect of land use type on soil absolute and specific enzyme activities in a Brazilian semi-arid region. Catena 172:397–407.

    Article  Google Scholar 

  • DeGryze S, Six J, Paustian K, Morris SJ, Paul EA, Merckx R. 2004. Soil organic carbon pool changes following land-use conversions. Global Change Biol 10:1120–1132.

    Article  Google Scholar 

  • Dieckow J, Bayer C, Conceicao PC, Zanatta JA, Martin-Neto L, Milori DBM, Salton JC, Macedo MM, Mielniczuk J, Hernani LC. 2009. Land use, tillage, texture and organic matter stock and composition in tropical and subtropical Brazilian soils. Eur J Soil Sci 60:240–249.

    Article  CAS  Google Scholar 

  • Dijkstra P, Thomas SC, Heinrich PL, Koch GW, Schwartz E, Hungate BA. 2011. Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biol Biochem 43:2023–2031.

    Article  CAS  Google Scholar 

  • Garcia-Franco N, Martínez-Mena M, Goberna M, Albaladejo J. 2015. Changes in soil aggregation and microbial community structure control carbon sequestration after afforestation of semiarid shrublands. Soil Biol Biochem 87:110–121.

    Article  CAS  Google Scholar 

  • Han M, Zhu B. 2020. Changes in soil greenhouse gas fluxes by land use change from primary forest. Global Change Biol 26:2656–2667.

    Article  Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156.

    Article  Google Scholar 

  • Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G. 2017. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Ann Rev Ecol Evol Syst 48:419–445.

    Article  Google Scholar 

  • Janssen P, Bec S, Fuhr M, Taberlet P, Brun J-J, Bouget C, Edwards D. 2018. Present conditions may mediate the legacy effect of past land-use changes on species richness and composition of above- and below-ground assemblages. J Ecol 106:306–318.

    Article  CAS  Google Scholar 

  • Jian S, Li J, Chen J, Wang G, Mayes MA, Dzantor KE, Hui D, Luo Y. 2016. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biol Biochem 101:32–43.

    Article  CAS  Google Scholar 

  • Jin X, Liu Y, Hu W, Wang G, Kong Z, Wu L, Ge G. 2019. Soil bacterial and fungal communities and the associated nutrient cycling responses to forest conversion after selective logging in a subtropical forest of China. For Ecol Manag 444:308–317.

    Article  Google Scholar 

  • Kallenbach CM, Frey SD, Grandy AS. 2016. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:13630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallenbach CM, Grandy AS, Frey SD, Diefendorf AF. 2015. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol Biochem 91:279–290.

    Article  CAS  Google Scholar 

  • Könönen M, Jauhiainen J, Straková P, Heinonsalo J, Laiho R, Kusin K, Limin S, Vasander H. 2018. Deforested and drained tropical peatland sites show poorer peat substrate quality and lower microbial biomass and activity than unmanaged swamp forest. Soil Biol Biochem 123:229–241.

    Article  Google Scholar 

  • Ledo A, Smith P, Zerihun A, Whitaker J, Vicente-Vicente JL, Qin ZC, McNamara NP, Zinn YL, Llorente M, Liebig M, Kuhnert M, Dondini M, Don A, Diaz-Pines E, Datta A, Bakka H, Aguilera E, Hillier J. 2020. Changes in soil organic carbon under perennial crops. Global Change Biol 26:4158–4168.

    Article  Google Scholar 

  • Li D, Niu S, Luo Y. 2012. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–181.

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Chen J, Feng J, Wu J, Zhang Q, Jia W, Lin Q, Cheng X. 2020. How do biotic and abiotic factors regulate soil enzyme activities at plot and microplot scales under afforestation? Ecosystems 23:1408–1422.

    Article  CAS  Google Scholar 

  • Li Q, Feng J, Wu J, Jia W, Zhang Q, Chen Q, Zhang D, Cheng X. 2019. Spatial variation in soil microbial community structure and its relation to plant distribution and local environments following afforestation in central China. Soil Tillage Res 193:8–16.

    Article  Google Scholar 

  • Liang C, Amelung W, Lehmann J, Kastner M. 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biol 25:3578–3590.

    Article  Google Scholar 

  • Liang C, Schimel JP, Jastrow JD. 2017. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:17105.

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Hou E, Zhang L, Zang X, Yi Y, Zhang G, Wen D. 2019. Effects of forest conversion on carbon-degrading enzyme activities in subtropical China. Sci Total Environ 696:133.

    Article  Google Scholar 

  • Luo ZK, Rossel RAV, Shi Z. 2020. Distinct controls over the temporal dynamics of soil carbon fractions after land use change. Global Change Biol 26:4614–4625.

    Article  Google Scholar 

  • Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD. 2020. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J 14:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Malik AA, Puissant J, Buckeridge KM, Goodall T, Jehmlich N, Chowdhury S, Gweon HS, Peyton JM, Mason KE, van Agtmaal M, Blaud A, Clark IM, Whitaker J, Pywell RF, Ostle N, Gleixner G, Griffiths RI. 2018. Land use driven change in soil pH affects microbial carbon cycling processes. Nat Commun 9:3591.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik AA, Puissant J, Goodall T, Allison SD, Griffiths RI. 2019. Soil microbial communities with greater investment in resource acquisition have lower growth yield. Soil Biol Biochem 132:36–39.

    Article  CAS  Google Scholar 

  • Margida MG, Lashermes G, Moorhead DL. 2020. Estimating relative cellulolytic and ligninolytic enzyme activities as functions of lignin and cellulose content in decomposing plant litter. Soil Biol Biochem 141:107689.

    Article  CAS  Google Scholar 

  • Maslov MN, Maslova OA. 2020. Temperate peatlands use-management effects on seasonal patterns of soil microbial activity and nitrogen availability. Catena 190:104548.

    Article  CAS  Google Scholar 

  • Mayer M, Prescott CE, Abaker WEA, Augusto L, Cécillon L, Ferreira GWD, James J, Jandl R, Katzensteiner K, Laclau J-P, Laganière J, Nouvellon Y, Paré D, Stanturf JA, Vanguelova EI, Vesterdal L. 2020. Tamm Review: Influence of forest management activities on soil organic carbon stocks: a knowledge synthesis. For Ecol Manag 466:118.

    Article  Google Scholar 

  • McGee KM, Eaton WD, Porter TM, Hajibabaei M. 2020. Differences in the soil microbiomes of Pentaclethra macroloba across tree size and in contrasting land use histories. Plant and Soil 452:329–345.

    Article  CAS  Google Scholar 

  • Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS. 2017. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358:101–104.

    Article  CAS  PubMed  Google Scholar 

  • Moorhead DL, Lashermes G, Sinsabaugh RL, Weintraub MN. 2013. Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biol Biochem 66:17–19.

    Article  CAS  Google Scholar 

  • Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A. 2014. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol 5:22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno JL, Torres IF, Garcia C, Lopez-Mondejar R, Bastida F. 2019. Land use shapes the resistance of the soil microbial community and the C cycling response to drought in a semi-arid area. Sci Total Environ 648:1018–1030.

    Article  CAS  PubMed  Google Scholar 

  • Nazaries L, Tottey W, Robinson L, Khachane A, Al-Soud WA, Sørensen S, Singh BK. 2015. Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming. Soil Biol Biochem 89:123–134.

    Article  CAS  Google Scholar 

  • Piton G, Foulquier A, Martínez-García LB, Legay N, Hedlund K, Martins da Silva P, Nascimento E, Reis F, Sousa JP, De Deyn GB, Clement JC. 2020. Disentangling drivers of soil microbial potential enzyme activity across rain regimes: An approach based on the functional trait framework. Soil Biol Biochem 148:107881.

    Article  CAS  Google Scholar 

  • Poeplau C, Don A. 2013. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201.

    Article  CAS  Google Scholar 

  • Poeplau C, Helfrich M, Dechow R, Szoboszlay M, Tebbe CC, Don A, Greiner B, Zopf D, Thumm U, Korevaar H, Geerts R. 2019. Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands. Soil Biol Biochem 130:167–176.

    Article  CAS  Google Scholar 

  • Pressler Y, Zhou J, He Z, Van Nostrand JD, Smith AP. 2020. Post-agricultural tropical forest regeneration shifts soil microbial functional potential for carbon and nutrient cycling. Soil Biol Biochem 145:107784.

    Article  CAS  Google Scholar 

  • Raiesi F, Beheshti A. 2014. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Appl Soil Ecol 75:63–70.

    Article  Google Scholar 

  • Raiesi F, Salek-Gilani S. 2020. Development of a soil quality index for characterizing effects of land-use changes on degradation and ecological restoration of rangeland soils in a semi-arid ecosystem. Land Degrad Dev 31:1533–1544.

    Article  Google Scholar 

  • Ramin KI, Allison SD. 2019. Bacterial tradeoffs in growth rate and extracellular enzymes. Front Microbiol 10:2956.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romani AM, Fischer H, Mille-Lindblom C, Tranvik LJ. 2006. Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569.

    Article  PubMed  Google Scholar 

  • Rosenberg MS, Adams DC, Gurevitch J. 2000. MetaWin: Statistical software for meta-analysis. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Sauvadet M, Lashermes G, Alavoine G, Recous S, Chauvat M, Maron P-A, Bertrand I. 2018. High carbon use efficiency and low priming effect promote soil C stabilization under reduced tillage. Soil Biol Biochem 123:64–73.

    Article  CAS  Google Scholar 

  • Schermelleh-Engel K, Moosbrugger H, Muller H. 2003. Evaluating the fit of structural equation models, tests of significance descriptive goodness-of-fit measures. Methods Psychol Res Online 8:23–74.

    Google Scholar 

  • Schimel JP, Schaeffer SM. 2012. Microbial control over carbon cycling in soil. Front Microbiol 3:348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao P, Liang C, Rubert-Nason K, Li X, Xie H, Bao X. 2019. Secondary successional forests undergo tightly-coupled changes in soil microbial community structure and soil organic matter. Soil Biol Biochem 128:56–65.

    Article  CAS  Google Scholar 

  • Singh K, Singh B, Singh RR. 2012. Changes in physico-chemical, microbial and enzymatic activities during restoration of degraded sodic land: Ecological suitability of mixed forest over monoculture plantation. Catena 96:57–67.

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Follstad Shah JJ. 2012. Ecoenzymatic stoichiometry and ecological theory. Ann Rev Ecol Evol Syst 43:313–343.

    Article  Google Scholar 

  • Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A. 2013. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16:930–939.

    Article  PubMed  Google Scholar 

  • Sinsabaugh RL. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404.

    Article  CAS  Google Scholar 

  • Solomon D, Lehmann J, Kinyangi J, Amelung W, Lobe I, Pell A, Riha S, Ngoze S, Verchot LOU, Mbugua D, Skjemstad JAN, SchÄFer T. 2007. Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Global Change Biol 13:511–530.

    Article  Google Scholar 

  • Spohn M, Giani L. 2011. Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time. Soil Biol Biochem 43:1081–1088.

    Article  CAS  Google Scholar 

  • Sun S, Badgley BD. 2019. Changes in microbial functional genes within the soil metagenome during forest ecosystem restoration. Soil Biol Biochem 135:163–172.

    Article  CAS  Google Scholar 

  • Takriti M, Wild B, Schnecker J, Mooshammer M, Knoltsch A, Lashchinskiy N, Eloy Alves RJ, Gentsch N, Gittel A, Mikutta R, Wanek W, Richter A. 2018. Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biol Biochem 121:212–220.

    Article  CAS  Google Scholar 

  • Thevenot M, Dignac M-F, Rumpel C. 2010. Fate of lignins in soils: A review. Soil Biol Biochem 42:1200–1211.

    Article  CAS  Google Scholar 

  • Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC, Zhou J, Singh BK. 2016. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. ISME J 10:2593–2604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turley NE, Bell-Dereske L, Evans SE, Brudvig LA, Yang G. 2020. Agricultural land-use history and restoration impact soil microbial biodiversity. J Appl Ecol 57:852–863.

    Article  Google Scholar 

  • van der Wal A, Geydan TD, Kuyper TW, de Boer W. 2013. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol Rev 37:477–494.

    Article  PubMed  Google Scholar 

  • Vázquez E, Benito M, Espejo R, Teutscherova N. 2020. Response of soil properties and microbial indicators to land use change in an acid soil under Mediterranean conditions. Catena 189:104486.

  • Veldkamp E, Schmidt M, Powers JS, Corre MD. 2020. Deforestation and reforestation impacts on soils in the tropics. Nat Rev Earth Environ 1:590–605.

    Article  Google Scholar 

  • Wang H, Jin J, Yu P, Fu W, Morrison L, Lin H, Meng M, Zhou X, Lv Y, Wu J. 2020. Converting evergreen broad-leaved forests into tea and Moso bamboo plantations affects labile carbon pools and the chemical composition of soil organic carbon. Sci Total Environ 711:135225.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zou Y, Di Gioia D, Singh BK, Li Q. 2020. Conversion to agroforestry and monoculture plantation is detrimental to the soil carbon and nitrogen cycles and microbial communities of a rainforest. Soil Biol Biochem 147:107849.

    Article  CAS  Google Scholar 

  • Wang W, Zhang Q, Sun X, Chen D, Insam H, Koide RT, Zhang S. 2020. Effects of mixed-species litter on bacterial and fungal lignocellulose degradation functions during litter decomposition. Soil Biol Biochem 141:107690.

    Article  CAS  Google Scholar 

  • Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lutzow M, Marin-Spiotta E, van Wesemael B, Rabot E, Liess M, Garcia-Franco N, Wollschlager U, Vogel HJ, Kogel-Knabner I. 2019. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 333:149–162.

    Article  CAS  Google Scholar 

  • Wu J, Chen Q, Jia W, Long C, Liu W, Liu G, Cheng X. 2020. Asymmetric response of soil methane uptake rate to land degradation and restoration: data synthesis. Global Change Biol 26:6581–6593.

    Article  Google Scholar 

  • Xu G, Long Z, Ren P, Ren C, Cao Y, Huang Y, Hu S. 2020. Differential responses of soil hydrolytic and oxidative enzyme activities to the natural forest conversion. Sci Total Environ 716:136.

    Article  Google Scholar 

  • Yamashita T, Flessa H, John B, Helfrich M, Ludwig B. 2006. Organic matter in density ractions of water-stable aggregates in silty soils: Effect of land use. Soil Biol Biochem 38:3222–3234.

    Article  CAS  Google Scholar 

  • Yang J, Li A, Yang Y, Li G, Zhang F. 2020. Soil organic carbon stability under natural and anthropogenic-induced perturbations. Earth Sci Rev 205:103119.

    Article  Google Scholar 

  • Yang S, Yao F, Ye J, Fang S, Wang Z, Wang R, Zhang Q, Ma R, Wang X, Jiang Y, Dorodnikov M, Li H, Zou H. 2019. Latitudinal pattern of soil lignin/cellulose content and the activity of their degrading enzymes across a temperate forest ecosystem. Ecol Indic 102:557–568.

    Article  CAS  Google Scholar 

  • Yu P, Liu S, Han K, Guan S, Zhou D. 2017. Conversion of cropland to forage land and grassland increases soil labile carbon and enzyme activities in northeastern China. Agric Ecosyst Environ 245:83–91.

    Article  CAS  Google Scholar 

  • Zhang C, Liu G, Xue S, Wang G. 2016. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol Biochem 97:40–49.

    Article  CAS  Google Scholar 

  • Zhang Q, Feng J, Wu J, Zhang D, Chen Q, Li Q, Long C, Feyissa A, Cheng X. 2019a. Variations in carbon-decomposition enzyme activities respond differently to land use change in central China. Land Degrad Dev 30:459–469.

    Article  Google Scholar 

  • Zhang W, Xu Y, Gao D, Wang X, Liu W, Deng J, Han X, Yang G, Feng Y, Ren G. 2019b. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China. Soil Biol Biochem 134:1–14.

    Article  Google Scholar 

  • Zhou M, Zhu B, Wang S, Zhu X, Vereecken H, Bruggemann N. 2017. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: a global meta-analysis. Global Change Biol 23:4068–4083.

    Article  Google Scholar 

  • Zhou Z, Wang C, Luo Y. 2018. Effects of forest degradation on microbial communities and soil carbon cycling: A global meta-analysis. Global Ecol Biogeogr 27:110–124.

    Article  Google Scholar 

  • Zhou Z, Wang C, Luo Y. 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat Commun 11:3072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Jackson RD, DeLucia EH, Tiedje JM, Liang C. 2020. The soil microbial carbon pump: From conceptual insights to empirical assessments. Global Change Biol 26:6032–6039.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (31770563 and 31971479) and the “Strategic Priority Research Program B of the Chinese Academy of Sciences” (XDB15010200). We thank Wei Jia for their assistance in data collection and analyses.

Author information

Authors and Affiliations

Authors

Contributions

JW, XC, YL and GL conceived and designed the study. JW, XC and WL performed research. JW, XC and WL analyzed the data. JW, XC and GL wrote the paper with contribution also from all other authors.

Corresponding authors

Correspondence to Xiaoli Cheng or Guihua Liu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Cheng, X., Luo, Y. et al. Identifying Carbon-Degrading Enzyme Activities in Association with Soil Organic Carbon Accumulation Under Land-Use Changes. Ecosystems 25, 1219–1233 (2022). https://doi.org/10.1007/s10021-021-00711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00711-y

Keywords

Navigation