Skip to main content

Advertisement

Log in

Ecosystem-Scale Oxygen Manipulations Alter Terminal Electron Acceptor Pathways in a Eutrophic Reservoir

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Lakes and reservoirs globally are experiencing unprecedented changes in land use and climate, depleting dissolved oxygen (DO) in the bottom waters (hypolimnia) of these ecosystems. Because DO is the most energetically favorable terminal electron acceptor (TEA) for organic carbon mineralization, its availability controls the onset of alternate TEA pathways (for example, denitrification, manganese reduction, iron reduction, sulfate reduction, methanogenesis). Low DO concentrations can trigger organic carbon mineralization via alternate TEA pathways in the water column and sediments, which has important implications for greenhouse gas production [carbon dioxide (CO2) and methane (CH4)]. In this study, we experimentally injected supersaturated DO into the hypolimnion of a eutrophic reservoir and measured concentrations of TEAs and terminal electron products (TEPs) in the experimental reservoir and an upstream reference reservoir. We calculated the electron equivalents yielded from each TEA pathway and estimated the contributions of each TEA pathway to organic carbon processing in both reservoirs. DO additions to the hypolimnion of the experimental reservoir promoted aerobic respiration, suppressing most alternate TEA pathways and resulting in elevated CO2 accumulation. In comparison, organic carbon mineralization in the reference reservoir’s anoxic hypolimnion was dominated by alternate TEA pathways, resulting in both CH4 and CO2 accumulation. Our ecosystem-scale experiments demonstrate that the alternate TEA pathways that succeed aerobic respiration in lakes and reservoirs can be manipulated at the ecosystem scale. Moreover, changes in the DO dynamics of freshwater lakes and reservoirs may result in concomitant changes in the redox reactions in the water column that control organic carbon mineralization and greenhouse gas accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

All datasets analyzed in this manuscript are cited therein and available in the Environmental Data Initiative (EDI) repository. The DOIs for the datasets are: https://doi.org/10.6073/pasta/6a382debfb76aa74a56232ec87aabccd, https://doi.org/10.6073/pasta/8f19c5d19d816857e55077ba20570265, https://doi.org/10.6073/pasta/8f19c5d19d816857e55077ba20570265https://doi.org/10.6073/pasta/e9b8ee83bc7fad6dcdf439a41ad80a3c, and https://doi.org/10.6073/pasta/13c628ee3dc68d709c3a56cb61b9c747h.

References

  • APHA. 1992. Standard methods for the examination of water and wastewater. Washington DC: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VL, del Giorgio P, Roland F. 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4:593–6.

    Article  CAS  Google Scholar 

  • Bastviken D, Persson L, Odham G, Tranvik LJ. 2004a. Degradation of dissolved organic matter in oxic and anoxic lake water. Limnol Oceanogr 49:109–16.

    Article  CAS  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L. 2004b. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18:GB4009.

    Google Scholar 

  • Blees J, Niemann H, Wenk CB, Zopfi J, Schubert CJ, Kirf MK, Veronesi ML, Hitz C, Lehmann MF. 2014. Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland). Limnol Oceanogr 59:311–24.

    Article  CAS  Google Scholar 

  • Bryant LD, Hsu-Kim H, Gantzer PA, Little JC. 2011. Solving the problem at the source: controlling Mn release at the sediment–water interface via hypolimnetic oxygenation. Water Res 45:6381–92.

    Article  CAS  PubMed  Google Scholar 

  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46:1394–407.

    Article  CAS  PubMed  Google Scholar 

  • Carey CC, McClure RP, Doubek JP, Lofton ME, Ward NK, Scott DT. 2018a. Chaoborus spp. transport CH4 from the sediments to the surface waters of a eutrophic reservoir, but their contribution to water column CH4 concentrations and diffusive efflux is minor. Environ Sci Tech 52:1165–73.

    Article  CAS  Google Scholar 

  • Carey CC, Gerling AB, Doubek JP, Hamre KD, McClure RP, Lofton ME, Farrell KJ. 2018b. Secchi depth data and discrete depth profiles of photosynthetically active radiation, temperature, dissolved oxygen, and pH for Beaverdam Reservoir, Carvins Cove Reservoir, Falling Creek Reservoir, Gatewood Reservoir, and Spring Hollow Reservoir in southwestern Virginia, USA 2013–2017. Environmental Data Initiative repository . https://doi.org/10.6073/pasta/6a382debfb76aa74a56232ec87aabccd.

    Article  Google Scholar 

  • Carey CC, Doubek JP, McClure RP, Hanson PC. 2018c. Oxygen dynamics control the burial of organic carbon in a eutrophic reservoir. Limnol Oceanogr Lett 3(3):293–301.

    Article  CAS  Google Scholar 

  • Carey CC, McClure RP, Gerling AB, Doubek JP, Chen S, Lofton ME, Hamre KD. 2019a. Time series of high-frequency profiles of depth, temperature, dissolved oxygen, conductivity, specific conductivity, chlorophyll a, turbidity, pH, oxidation–reduction potential, photosynthetic active radiation, and descent rate for Beaverdam Reservoir, Carvins Cove Reservoir, Falling Creek Reservoir, Gatewood Reservoir, and Spring Hollow Reservoir in Southwestern Virginia, USA 2013–2018. Environmental Data Initiative Repository . https://doi.org/10.6073/pasta/8f19c5d19d816857e55077ba20570265.

    Article  Google Scholar 

  • Carey CC, Lofton ME, Gerling AB, McClure RP, Doubek JP, Niederlehner BR, Farrell KJ. 2019b. Water chemistry time series for Beaverdam Reservoir, Carvins Cove Reservoir, Falling Creek Reservoir, Gatewood Reservoir, and Spring Hollow Reservoir in southwestern Virginia, USA 2013–2018. Environmental Data Initiative Repository . https://doi.org/10.6073/pasta/08a8d297003c8e8593f888980f52bbcf.

    Article  Google Scholar 

  • Carey CC, Gerling AB, Doubek JP, Hamre KD, McClure RP, Lofton ME, Farrell KJ, Wander HL. 2019c. Secchi depth data and discrete depth profiles of photosynthetically active radiation, temperature, dissolved oxygen, and pH for Beaverdam Reservoir, Carvins Cove Reservoir, Falling Creek Reservoir, Gatewood Reservoir, and Spring Hollow Reservoir in southwestern Virginia, USA 2013–2018 ver 7. Environmental Data Initiative . https://doi.org/10.6073/pasta/e9b8ee83bc7fad6dcdf439a41ad80a3c.

    Article  Google Scholar 

  • Carey CC, McClure RP, Schreiber ME, Lofton ME, Krueger KM. 2020. Time series of iron (II) and sulfate concentrations for Beaverdam and Falling Creek Reservoirs in southwestern Virginia, USA during 2016 ver 0. Environmental Data Initiative . https://doi.org/10.6073/pasta/13c628ee3dc68d709c3a56cb61b9c747.

    Article  Google Scholar 

  • Carpenter SR. 1996. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677–80.

    Article  Google Scholar 

  • Carpenter SR, Kitchell JF, Cottingham KL, Schindler DE, Christense DL, Post DM, Voichick N. 1996. Chlorophyll variability, nutrient input, and grazing: evidence from whole-lake experiments. Ecology 77:725–35.

    Article  Google Scholar 

  • Chapelle FH, McMahon PB, Dubrovsky NM, Fujii RF, Oaksford ET, Vroblesky DA. 1995. Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Water Resour Res 31:359–71.

    Article  CAS  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Daurte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack JM. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–85.

    Article  CAS  Google Scholar 

  • Conrad R. 1989. Control of methane production in terrestrial ecosystems. In: Andreae MO, Schimel DS, Eds. Exchsange of trace gases between terrestrial ecosystems and the atmosphere. Dahlem Konferenzen. Chichester: Wiley. p 39–58.

    Google Scholar 

  • Corzo A, Jiménez-Arias JL, Torres E, García-Robledo E, Lara M, Papaspyrou S. 2018. Biogeochemical changes at the sediment–water interface during redox transitions in an acidic reservoir: exchange of protons, acidity and electron donors and acceptors. Biogeochemistry 139:241–60.

    Article  Google Scholar 

  • Daye M, Klepac-Ceraj V, Pajusalu M, Rowland S, Farrell-Sherman A, Beukes N, Bosak T. 2019. Light-driven anaerobic microbial oxidation of manganese. Nature 576:311–14.

    Article  PubMed  CAS  Google Scholar 

  • Dean WE, Gorham E. 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535–8.

    Article  Google Scholar 

  • De Brabandere L, Canfield DE, Dalsgaard T, Friederich GE, Revsbech NP, Ulloa O, Thamdrup B. 2014. Vertical partitioning of nitrogen-loss processes across the oxic–anoxic interface of an oceanic oxygen minimum zone. Environ Micro 16:3041–54.

    Article  CAS  Google Scholar 

  • Deemer BR, Harrison JA, Li S, Beaulieu JJ, DelSontro T, Barros N, Bezzera-Neto JF, Powers SM, dos Santos MA, Vonk JA. 2016. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. BioScience 66:949–64.

    Article  PubMed  Google Scholar 

  • Deemer BR, Harrison JA. 2019. Summer redox dynamics in a eutrophic reservoir and sensitivity to a summer’s end drawdown event. Ecosystems 22:1618–32.

    Article  CAS  Google Scholar 

  • DelSontro T, del Giorgio PA, Prairie YT. 2018. No longer a paradox: the interaction between physical transport and biological processes explains the spatial distribution of surface water methane within and across lakes. Ecosystems 21:1073–87.

    Article  CAS  Google Scholar 

  • Deutzmann JS. 2020. Anaerobic methane oxidation in freshwater environments. In: Boll M, Ed. Anaerobic utilization of hydrocarbons, oils, and lipids: handbook of hydrocarbon and lipid microbiology. Cham: Springer. p 391–404.

    Chapter  Google Scholar 

  • Doubek JP, Campbell KL, Doubek KM, Hamre KD, Lofton ME, McClure RP, Ward NK, Carey CC. 2018. The effects of hypolimnetic anoxia on the diel vertical migration of freshwater crustacean zooplankton. Ecosphere 9(7):e02332.

    Article  Google Scholar 

  • Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochem Cycles 22:GB1018.

    Article  CAS  Google Scholar 

  • Frindte K, Allgaier M, Grossart HP, Eckert W. 2015. Microbial response to experimentally controlled redox transitions at the sediment water interface. PloS One 10(11):e0143428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galand PE, Fritze H, Conrad R, Yrjälä K. 2005. Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems. App Environ Micro 71:2195–8.

    Article  CAS  Google Scholar 

  • Gehring T, Klang J, Niedermayr A, Berzio S, Immenhauser A, Klocke M, Lübken M. 2015. Determination of methanogenic pathways through carbon isotope (δ13C) analysis for the two-stage anaerobic digestion of high-solids substrates. Environ Sci Tech 49:4705–14.

    Article  CAS  Google Scholar 

  • Gerling AB, Browne RG, Gantzer PA, Mobley MH, Little JC, Carey CC. 2014. First report of the successful operation of a side stream supersaturation hypolimnetic oxygenation system in a eutrophic, shallow reservoir. Water Res 67:129–43.

    Article  CAS  PubMed  Google Scholar 

  • Gerling AB, Munger ZW, Doubek JP, Hamre KD, Gantzer PA, Little JC, Carey CC. 2016. Whole-catchment manipulations of internal and external loading reveal the sensitivity of a century-old reservoir to hypoxia. Ecosystems 19:555–71.

    Article  Google Scholar 

  • Hamre KD, Gerling AB, Munger ZW, Doubek JP, McClure RP, Cottingham KL, Carey CC. 2017. Spatial variation in dinoflagellate recruitment along a reservoir ecosystem continuum. J Plankton Res 39:715–28.

    Article  CAS  Google Scholar 

  • Hamre KD, Lofton ME, McClure RP, Munger ZW, Doubek JP, Gerling AB, Schreiber ME, Carey CC. 2018. In situ fluorometry reveals a persistent, perennial hypolimnetic cyanobacterial bloom in a seasonally anoxic reservoir. Freshw Sci 37:483–95.

    Article  Google Scholar 

  • Hartnett HE, Keil RG, Hedges JI, Devol AH. 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391:572–5.

    Article  CAS  Google Scholar 

  • Huttunen JT, Hammar T, Alm J, Silvola J, Martikainen PJ. 2001. Greenhouse gases in non-oxygenated and artificially oxygenated eutrophied lakes during winter stratification. J Environ Qual 30:387–94.

    Article  CAS  PubMed  Google Scholar 

  • Jennings E, Jones S, Arvola L, Staehr PA, Gaiser E, Jones ID, Weathers KC, Weyhenmeyer GA, Chiu C, De Eyto E. 2012. Effects of weather-related episodic events in lakes: an analysis based on high-frequency data. Freshw Biol 57:589–601.

    Article  CAS  Google Scholar 

  • Jenny JP, Francus P, Normandeau A, Lapointe F, Perga ME, Ojala A, Schimmelmann A, Zolitschka B. 2016. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob Chang Biol 22:1481–9.

    Article  PubMed  Google Scholar 

  • Jokinen S, Virtasalo JJ, Jilber TS, Kaiser J, Dellwig O, Arz HW, Hänninen J, Arppe L, Collander M, Saarinen T. 2018. A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century. Biogeosciences 15:3975–4001.

    Article  CAS  Google Scholar 

  • Kehew AE. 2000. Applied chemical hydrogeology. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Kelly CA, Rudd JW, Schindler DW. 1988. Carbon and electron flow via methanogenesis, SO42−, NO3, Fe3+, and Mn4+ reduction in the anoxic hypolimnia of three lakes. Arch Hydrobiol 31:333–44.

    CAS  Google Scholar 

  • Klug JL, Richardson DC, Ewing HA, Hargreaves BR, Samal NR, Vachon D, Pierson DC, Lindsey AM, O’Donnell DM, Effler SW, Weathers KC. 2012. Ecosystem effects of a tropical cyclone on a network of lakes in northeastern North America. Environ Sci Tech 46:11693–701.

    Article  CAS  Google Scholar 

  • Knoll LB, Vanni MJ, Renwick WH, Dittman EK, Gephart JA. 2013. Temperate reservoirs are large carbon sinks and small CO2 sources: results from high-resolution carbon budgets. Global Biogeochem Cycles 27:52–64.

    Article  CAS  Google Scholar 

  • Kreling J, Bravidor J, Engelhardt C, Hupfer M, Koschorreck M, Lorke A. 2017. The importance of physical transport and oxygen consumption for the development of a metalimnetic oxygen minimum in a lake. Limnol Oceanogr 62:348–63.

    Article  Google Scholar 

  • Krueger KM, Vavrus CE, Lofton ME, McClure RP, Gantzer PA, Carey CC, Schreiber ME. 2020. Iron and manganese fluxes across the sediment-water interface in a drinking water reservoir. Water Res. 182:116003.

    Article  CAS  PubMed  Google Scholar 

  • Lau MP, Sander M, Gelbrecht J, Hupfer M. 2016. Spatiotemporal redox dynamics in a freshwater lake sediment under alternating oxygen availabilities: combined analyses of dissolved and particulate electron acceptors. Environ Chem 13:826–37.

    Article  CAS  Google Scholar 

  • Lau MP, Sander M, Gelbrecht J, Hupfer M. 2015. Solid phases as important electron acceptors in freshwater organic sediments. Biogeochemistry 123:49–61.

    Article  CAS  Google Scholar 

  • Marcè R, Rodríguez-Arias MÀ, García JC, Armengol J. 2010. El Niño Southern oscillation and climate trends impact reservoir water quality. Glob Chang Biol 16:2857–65.

    Article  Google Scholar 

  • Matthews DA, Effler SW, Driscoll CT, O’Donnell SM, Matthews CM. 2008. Electron budgets for the hypolimnion of a recovering urban lake, 1989–2004: response to changes in organic carbon deposition and availability of electron acceptors. Limnol Oceanogr 53:743–59.

    Article  CAS  Google Scholar 

  • Mattson MD, Likens GE. 1992. Redox reactions of organic matter decomposition in a soft water lake. Biogeochemistry 19:149–72.

    Google Scholar 

  • Matzinger A, Müller B, Niederhauser P, Schmid M, Wüest A. 2010. Hypolimnetic oxygen consumption by sediment-based reduced substances in former eutrophic lakes. Limnol Oceanogr 55:2073–84.

    Article  CAS  Google Scholar 

  • Mayr MJ, Zimmermann M, Dey J, Brand A, Wherli B, Bürgmann H. 2020. Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn. Communications Biol 3:108.

    Article  CAS  Google Scholar 

  • McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–12.

    Article  CAS  Google Scholar 

  • Mendonça R, Müller RA, Clow D, Verpoorter C, Raymond P, Tranvik LJ, Sobek S. 2017. Organic carbon burial in global lakes and reservoirs. Nat Commun 8:1–7.

    Article  CAS  Google Scholar 

  • McClure RP, Hamre KD, Niederlehner BR, Munger ZW, Chen S, Lofton ME, Schreiber ME, Carey CC. 2018. Metalimnetic oxygen minima alter the vertical profiles of carbon dioxide and methane in a managed freshwater reservoir. Sci Total Environ 636:610–20.

    Article  CAS  PubMed  Google Scholar 

  • Munger ZW, Carey CC, Gerling AB, Hamre KD, Doubek JP, Klepatzki SD, McClure RM, Schreiber ME. 2016. Effectiveness of hypolimnetic oxygenation for preventing accumulation of Fe and Mn in a drinking water reservoir. Water Res 106:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Munger ZW, Carey CC, Gerling AB, Doubek JP, Hamre KD, McClure RP, Schreiber ME. 2019. Oxygenation and hydrologic controls on iron and manganese mass budgets in a drinking-water reservoir. Lake Reservoir Manag 35:277–91.

    Article  CAS  Google Scholar 

  • Morris JC, Stumm W. 1967. Redox equilibria and measurements of potentials in the aquatic environment. In: Equilibrium concepts in natural water systems. pp\ 270–85.

  • Oswald K, Milucka J, Brand A, Littmann S, Wehrli B, Kuypers MM, Schubert CJ. 2015. Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes. PLoS One 10(7):e0132574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Picardal F. 2012. Abiotic and microbial interactions during anaerobic transformations of Fe(II) and NOx. Frontiers Microbiol 3:112.

    Article  Google Scholar 

  • Peeters F, Fernandez JE, Hofmann H. 2019. Sediment fluxes rather than oxic methanogenesis explain diffusive CH4 emissions from lakes and reservoirs. Sci Rep 9:1–10.

    Article  CAS  Google Scholar 

  • Prairie YT, Alm J, Beaulieu J, Barros N, Battin T, Cole JJ, del Giorgio P, DelSontro T, Guérin F, Harby A, Harrison J, Mercier-Blais S, Serça D, Sobek S, Vachon D. 2018. Greenhouse gas emissions from freshwater reservoirs: What does the atmosphere see? Ecosystems 21:1058–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read JS, Hamilton DP, Jones ID, Muraoka K, Winslow LA, Kroiss R, Wu CH, Gaiser E. 2011. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Env Model Softw 26:1325–36.

    Article  Google Scholar 

  • Rudd JW, Hamilton RD. 1978. Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnol Oceanogr 23:337–48.

    Article  CAS  Google Scholar 

  • Schafran GC, Driscoll CT. 1987. Comparison of terrestrial and hypolimnetic sediment generation of acid neutralizing capacity for an acidic Adirondack lake. Environ Sci Tech 21:988–93.

    Article  CAS  Google Scholar 

  • Schindler DW. 1998. Whole-ecosystem experiments: replication versus realism: the need for ecosystem-scale experiments. Ecosystems 1:323–34.

    Article  Google Scholar 

  • Schlesinger WH. 1997. Biogeochemistry: an analysis of global change. 2nd edn. San Diego (CA): Academic Press. p 588.

    Google Scholar 

  • Sivan O, Adler M, Pearson A, Gelman F, Bar-Or I, John SG, Eckert W. 2011. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol Oceanogr 56:1536–44.

    Article  CAS  Google Scholar 

  • Sobek S, Durisch-Kaiser E, Zurbrügg R, Wongfun N, Wessels M, Pasche N, Wehrli B. 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr 54:2243–54.

    Article  Google Scholar 

  • Stanley EH, Casson NJ, Christel ST, Crawford JT, Loken LC, Oliver SK. 2016. The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol Monogr 86:146–71.

    Article  Google Scholar 

  • Stumm W, Morgan JJ. 1996. Aquatic chemistry. 3rd edn. New York (NY): Wiley. p 1040.

    Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kuster T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melak JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, Wachenfeldt E, Weyhenmeyer GA. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6part2):2298–314.

    Article  CAS  Google Scholar 

  • Vegas-Vilarrúbia T, Corella JP, Pérez-Zanón N, Buchaca T, Trapote MC, López P, Sigró J, Rull V. 2018. Historical shifts in oxygenation regime as recorded in the laminated sediments of lake Montcortès (Central Pyrenees) support hypoxia as a continental-scale phenomenon. Sci Total Environ 612:1577–92.

    Article  PubMed  CAS  Google Scholar 

  • Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Van Cappellen P. 2000. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. J Appl Geochem 15:785–90.

    Article  CAS  Google Scholar 

  • Virginia Division of Mineral Resources. 2003. Digital representation of the 1993 geologic map of Virginia, Publication 174, CD ROM (ISO-9660) contains image file, expanded explanation in pdf, and ESRI shapefiles, scale 1:500000.

  • US EPA. 1994. Method 200.7: determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry.

  • Weathers KC, Stayer DL. 2013. Fundamentals of ecosystem science. In: Appendix—A primer in biologically mediated redox reactions in ecosystems. pp 297–301.

  • Wilkinson GM, Cole JJ, Pace ML, Johnson RA, Kleinhans MJ. 2015. Physical and biological contributions to metalimnetic oxygen maxima in lakes. Limnol Oceanogr 60:242–51.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the WVWA for access to field sites and their long-term support of our work. We thank Bobbie Neiderlehner for her crucial help in the analytical chemistry laboratory and the Reservoir Group laboratory members who provided useful feedback in summer 2016, particularly Jonathan Doubek, Zachary Munger, Charlotte Harrell, and Kylie Campbell. Paul Hanson, Erin Hotchkiss, members of the Carey Lab, and GLEON colleagues provided helpful feedback throughout the development of the manuscript. This work was financially supported by NSF DEB-1753639, CNS-1737424, and DBI-1933016. Supporting figures and text for the manuscript can be found in the Supporting Information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan P. McClure.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClure, R.P., Schreiber, M.E., Lofton, M.E. et al. Ecosystem-Scale Oxygen Manipulations Alter Terminal Electron Acceptor Pathways in a Eutrophic Reservoir. Ecosystems 24, 1281–1298 (2021). https://doi.org/10.1007/s10021-020-00582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00582-9

Keywords

Navigation