Skip to main content

Advertisement

Log in

Seasonality of a Floodplain Subsidy to the Fish Community of a Large Temperate River

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

This study examines the temporal and spatial variability of the floodplain trophic contribution to the fish community of Lake Saint-Pierre, a large (≈ 300 km2), shallow (≈ 3 m) widening of the St. Lawrence River (Québec, Canada). We hypothesized that floodplain contribution to fish diet would be maximal during the early growing period following the seasonal flood and at sites located closest to the floodplain. Carbon stable isotope ratios (δ13C) of invertebrates and 35 fish species were analyzed at the beginning and at the end of two growing seasons, at increasing distances from the floodplain. Floodplain contribution, in the form of exported aquatic invertebrates, was estimated at the fish community (littoral versus main river), species and individual fish level, using a stable isotopic mixing model and a linear mixed model selection. As hypothesized, fish captured in the early part of the growing season near the floodplain benefitted from the largest floodplain contribution, which decreased during the late growing season. In addition, floodplain contribution differed among fish species, being higher in small or immature littoral species (northern pike, yellow perch, blackchin and golden shiners) than for larger taxa inhabiting the main river channel (shorthead redhorse, white sucker and channel catfish). Our study revealed that floodplain production during the early growing season represents a key food resource to a large portion of the riverine food web, thus highlighting the essential role of the floodplain in human-altered temperate rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • ACIA (Arctic Climate Impact Assessment). 2004. Impacts of a warming Arctic: Arctic climate impact assessment. Oxford, UK: Cambridge University Press.

    Google Scholar 

  • Barth JAC, Veizer J. 1999. Carbon cycle in St. Lawrence aquatic ecosystems at Cornwall (Ontario), Canada: seasonal and spatial variations. Chem Geol 159:107–28.

    Article  CAS  Google Scholar 

  • Bayley PB. 1995. Understanding large river: floodplain ecosystems. BioScience 45:153–8.

    Article  Google Scholar 

  • Bertrand M, Cabana G, Marcogliese DJ, Magnan P. 2011. Estimating the feeding range of a mobile consumer in a river-flood plain system using δ13C gradients and parasites. J Anim Ecol 80:1313–23.

    Article  PubMed  Google Scholar 

  • Bivand RS, Wong DWS. 2018. Comparing implementations of global and local indicators of spatial association. TEST 27:716–48.

    Article  Google Scholar 

  • Bunn SE, Boon PI. 1993. What sources of organic carbon drive food webs in billabongs? A study based on stable isotope analysis. Oecologia 96:85–94.

    Article  PubMed  Google Scholar 

  • Burn DH, Whitfield PH. 2016. Changes in floods and flood regimes in Canada. Can Water Resour J 41:139–50.

    Article  Google Scholar 

  • Burnham KP, Anderson DR. 1998. Introduction in: Model selection and inference: Springer.

  • Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Berlin: Springer.

  • Busst GMA, Britton JR. 2018. Tissue-specific turnover rates of the nitrogen stable isotope as functions of time and growth in a cyprinid fish. Hydrobiologia 805:49–60.

    Article  CAS  Google Scholar 

  • Casper AF, Thorp JH. 2007. Diel and lateral patterns of zooplankton distribution in the St. Lawrence River. River Res Applic 23:73–85.

    Article  Google Scholar 

  • Carleton SA, Martínez del Rio C. 2005. The effect of cold-induced increased metabolic rate on the rate of 13C and 15N incorporation in house sparrows (Passer domesticus). Oecologia 144:226–32.

    Article  CAS  PubMed  Google Scholar 

  • Delong MD, Thorp JH. 2006. Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia 147:76–85.

    Article  PubMed  Google Scholar 

  • DeNiro MJ, Epstein S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506.

    Article  CAS  Google Scholar 

  • Dettmers JM, Wahl DH, Soluk DA, Gutreuter S. 2001. Life in the fast lane: fish and foodweb structure in the main channel of large rivers. J North Am Benthol Soc 20:255–65.

    Article  Google Scholar 

  • Fernandes CC. 1997. Lateral migration of fishes in Amazon floodplains. Ecol Freshw Fish 6:36–44.

    Article  Google Scholar 

  • Finlay JC. 2001. Stable carbon isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82:1052–64.

    Google Scholar 

  • Forsberg BR, Araujo-Lima CARM, Martinelli LA, Victoria RL, Bonassi JA. 1993. Autotrophic carbon sources for fish of the central Amazon. Ecology 74:643–52.

    Article  Google Scholar 

  • Frenette JJ, Arts MT, Morin J. 2003. Spectral gradients of downwelling light in a fluvial lake (Lake Saint-Pierre, St-Lawrence River). Aquat Ecol 37:77–85.

    Article  Google Scholar 

  • Górski K, Winter HV, De Leeuw JJ, Minin AE, Nagelkerke LAJ. 2010. Fish spawning in a large temperate floodplain: the role of flooding and temperature. Freshw Biol 55:1509–19.

    Article  Google Scholar 

  • Górski K, Collier KJ, Duggan IC, Taylor CM, Hamilton DP. 2013. Connectivity and complexity of floodplain habitats govern zooplankton dynamics in a large temperate river system. Freshw Biol 58:1458–70.

    Article  Google Scholar 

  • Górski K, De Leeuw JJ, Winter HV, Khoruzhaya VV, Boldyrev VS, Vekhov DA, Nagelkerke LAJ. 2016. The importance of flooded terrestrial habitats for larval fish in a semi-natural large floodplain (Volga, Russian Federation). Inland Waters 6:105–10.

    Article  Google Scholar 

  • Gutreuter S, Bartels AD, Irons K, Sandheinrich MB. 1999. Evaluation of the flood-pulse concept based on statistical models of growth of selected fishes of the Upper Mississippi River system. Can J Fish Aquat Sci 56:2282–91.

    Article  Google Scholar 

  • Herwig BR, Wahl DH, Dettmers JM, Soluk DA. 2007. Spatial and temporal patterns in the food web structure of a large floodplain river assessed using stable isotopes. Can J Fish Aquat Sci 64:495–508.

    Article  CAS  Google Scholar 

  • Hesslein RH, Hallard KA, Ramlal P. 1993. Replacement of sulfur, carbon, and nitrogen in tissues of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Can J Fish Aquat Sci 50:2071–6.

    Article  CAS  Google Scholar 

  • Hladyz S, Nielsen DL, Suter PJ, Krull ES. 2012. Temporal variations in organic carbon utilization by consumers in a lowland river. River Res Applic 28:513–28.

    Article  Google Scholar 

  • Hobson KA. 1999. Tracing the origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–26.

    Article  PubMed  Google Scholar 

  • Hudon C, Gagnon P, Rondeau M, Hébert S, Gilbert D, Hill B, Patoine M, Starr M. 2017. Hydrological and biological processes modulate carbon, nitrogen, and phosphorus flux from the St. Lawrence River to its estuary (Québec, Canada). Biogeochemistry 135:251–76.

    Article  CAS  Google Scholar 

  • Hudon C, Jean M, Létourneau G. 2018. Temporal (1970-2016) changes in human pressures and wetland response in the St. Lawrence River (Québec, Canada). Sci Total Environ 643:1137–51.

    Article  CAS  PubMed  Google Scholar 

  • Humphries P, Keckeis H, Finlayson B. 2014. The river wave concept: integrating river ecosystem models. BioScience 64:870–82.

    Article  Google Scholar 

  • Huryn AD, Riley RH, Young RG, Arbuckle CJ, Peacock K, Lyon G. 2001. Temporal shift in contribution of terrestrial organic matter to consumer production in a grassland river. Freshw Biol 46:213–26.

    Article  Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S. 2011. Comparing isotopic niche widths among and within communities: SIBER- Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602.

    Article  PubMed  Google Scholar 

  • Jardine TD, Gray MA, McWilliam SM, Cunjak RA. 2005. Stable isotope variability in tissues of temperate stream fishes. Trans Am Fish Soc 134:1103–10.

    Article  CAS  Google Scholar 

  • Jobling M. 1983. Growth studies with fish: overcoming the problems of size variation. J. Fish Biol 22:153–7.

    Article  Google Scholar 

  • Jones RI, Grey J. 2011. Biogenic methane in freshwater food webs. Freshw Biol 56:213–29.

    Article  CAS  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE. 1989. The flood pulse concept in river-floodplain systems. Can J Fish Aquat Sci Spec Publ 106:110–27.

    Google Scholar 

  • Junk WJ, Robertson BA (1997) Aquatic invertebrates. In: Junk WJ (ed) The Central Amazon floodplain, ecology of a pulsing system, vol 126. Berlin, Springer-Verlag.

    Google Scholar 

  • Keough JR, Sierszen ME, Hagley CA. 1996. Analysis of a Lake Superior coastal food web with stable isotope techniques. Limnol Oceanogr 41:136–46.

    Article  CAS  Google Scholar 

  • Keough JR, Hagley CA, Ruzycki E, Sierszen M. 1998. δ13C composition of primary producers and role of detritus in a freshwater coastal ecosystem. Limnol Oceanogr 43:734–40.

    Article  CAS  Google Scholar 

  • Kiljunen M, Grey J, Sinisalo T, Harrod C, Immonen H, Jones RI. 2006. A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J Appl Ecol 43:1213–22.

    Article  CAS  Google Scholar 

  • Kirjasniemi M, Valtonen T. 1997. Size-dependent over-winter mortality of young-of-the-year roach, Rutilus rutilus. 1997. Environ Biol Fishes 50:451–6.

    Article  Google Scholar 

  • Kirk JTO. 1985. Effects of suspensoids (turbidity) on penetration of solar radiation in aquatic ecosystems. Hydrobiologia 125:195–208.

    Article  Google Scholar 

  • Latli A, Sturaro N, Desjardin N, Michel LN, Otjacques W, Lepoint G, Kestemont P. 2017. Isotopic half-life and enrichment factor in two species of European freshwater fish larvae: an experimental approach. Rapid Commun Mass Spectrom 31:685–92.

    Article  CAS  PubMed  Google Scholar 

  • Lessard M. 1991. Analyse multidimensionnelle et discontinuités spatiales des communautés de poissons du lac Saint-Pierre et de l’archipel de Sorel. Thesis: Université du Québec à Montréal, Montréal.

    Google Scholar 

  • Luz-Agostinho KDG, Agostinho AA, Gomes LC, Júlio HF Jr. 2008. Influence of flood pulses on diet composition and trophic relationships among piscivorous fish in the upper Paraná River floodplain. Hydrobiologia 607:187–98.

    Article  Google Scholar 

  • MacAvoy SE, Macko SA, Garman GC. 2001. Isotopic turnover in aquatic predators: quantifying the exploitation of migratory prey. Can J Fish Aquat Sci 58:923–32.

    Article  CAS  Google Scholar 

  • Nakano S, Murakami M. 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. PNAS 98:166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paris A, Cabana Frenette JJ. 2016. Highly variable benthic-pelagic coupling in a large fluvial lake revealed by carbon isotopes. Life Env 66:287–95.

    Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL. 2008. SIAR: stable isotope analysis in R. http://cran.r-project.org/web/packages/siar/index.html.

  • Parnell AC, Inger R, Bearhop S, Jackson AL. 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316.

    Article  Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG. 2007. Getting to the fat of the matter: models, methods, and assumptions for dealing with lipids in stable isotope analysis. Oecologia 152:179–89.

    Article  PubMed  Google Scholar 

  • R Development Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria: http://www.R-project.org.

  • Reckendorfer W, Keckeis H, Winkler G, Schiemer F. 1999. Zooplankton abundance in the River Danube, Austria: the significance of inshore retention. Freshw Biol 41:583–91.

    Article  Google Scholar 

  • Roach KA. 2013. Environmental factors affecting incorporation of terrestrial material into large river food webs. Freshw Sci 32:283–98.

    Article  Google Scholar 

  • Rooney N, McCann K, Gellner G, Moore JC. 2006. Structural asymmetry and the stability of diverse food webs. Nature 442:265–9.

    Article  CAS  PubMed  Google Scholar 

  • Savignac R. 1985. Détermination de l’abondance du zooplankton dans le lac St- Pierre pour la période de crue printanière de 1984. Rapport d’étude, N/Réf. Réquisition 038766. Gouvernement du Québec, Ministère du Loisir, de la Chasse et de la Pêche.

  • Schramm HL Jr, Eggleton MA. 2006. Applicability of the flood-pulse concept in a temperate floodplain river ecosystem: thermal and temporal components. River Res Applic 22:543–53.

    Article  Google Scholar 

  • Skinner MM, Martin AA, Moore BC. 2016. Is lipid correction necessary in the stable isotope analysis of fish tissues? Rapid Commun Mass Spectrom 30:881–9.

    Article  CAS  PubMed  Google Scholar 

  • Sparks RE. 1995. Need for ecosystem management of large rivers and their floodplains. BioScience 45:168–82.

    Article  Google Scholar 

  • Thomas SM, Crowther TW. 2015. Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. J Anim Ecol 84:861–70.

    Article  PubMed  Google Scholar 

  • Thorp JH, Delong MD, Greenwood KS, Casper AF. 1998. Isotopic analysis of three food web theories in constricted and floodplain regions of a large river. Oecologia 117:551–63.

    Article  PubMed  Google Scholar 

  • Tockner K, Pennetzdorfer D, Reiner N, Schiemer F, Ward JV. 1999. Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshw Biol 41:521–35.

    Article  Google Scholar 

  • Tockner K, Malard F, Ward JV. 2000. An extension of the flood pulse concept. Hydrol Process 14:2861–83.

    Article  Google Scholar 

  • Vander Zanden MJ, Clayton MK, Moody EK, Solomon CT, Weidel BC. 2015. Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS ONE 10:e0116182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Dijk TC, Van Staalduinen MA, Van der Sluijs JP. 2013. Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS ONE 8:e62374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vis C, Hudon C, Carignan R, Gagnon P. 2007. Spatial analysis of production by macrophytes, phytoplankton and epiphyton in a large river system under different water-level conditions. Ecosystems 10:293–310.

    Article  Google Scholar 

  • von Bertalanffy L. 1957. Quantitative laws in metabolism and growth. Q Rev Biol 32:217–31.

    Article  Google Scholar 

  • Waldhoff D, Saint-Paul U, Furch B. 1996. Value of fruits and seeds from the floodplain forests of central Amazonia as food resource for fish. Ecotropica 2:143–56.

    Google Scholar 

  • Walters DM, Wesner JS, Zuellig RE, Kowalski DA, Kondratieff MC. 2018. Holy flux: spatial and temporal variation in massive pulses of emerging insect biomass from western U.S. rivers. Ecology 99:238–40.

    Article  PubMed  Google Scholar 

  • Weidel BC, Carpenter SR, Kitchell JF, Vander Zanden MJ. 2011. Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a whole-lake 13C addition. Can J Fish Aquat Sci 68:387–99.

    Article  CAS  Google Scholar 

  • Welcomme RL. 1975. The fisheries ecology of African floodplains. Technical Paper3. CIFA/T/. FAO Committee for inland Fisheries of Africa, UN food and Agriculture Organization, Rome, Italy.

  • Welcomme RL. 1979. Fisheries ecology of floodplain rivers: Longman.

  • Woodland RJ, Rodrìguez MA, Magnan P, Glémet H, Cabana G. 2012. Incorporating temporally dynamic baselines in isotopic mixing models. Ecology 93:131–44.

    Article  PubMed  Google Scholar 

  • Xia B, Gao QF, Dong SL, Wang F. 2013. Carbon stable isotope turnover and fractionation in grass carp Ctenopharyngodon Idella tissues. Aquat Biol 19:207–16.

    Article  Google Scholar 

Download references

Acknowledgements

The help of Conrad Beauvais, Yasmina Remmal and Maude Lachapelle (ECCC), Irene T. Roca and Simon Boisvert (UQTR) with field sampling, Dave Gadbois-Côté (UQTR) for identification of invertebrates and Dany Bouchard for the isotope analysis is acknowledged with thanks. We also thank Marc Mingelbier (Ministère des Forêts, de la Faune et des Parcs du Québec) and the crew of the research vessel Lampsilis for their help during the 2009 sampling season. The map of sampling sites was prepared by François Boudreault (ECCC). This research was funded through the program Strategic Initiatives for Innovation (ISI) from Fonds de recherche du Québec—Nature et technologies (FRQNT) (Grant Number: OCTROI 186430). This study is a contribution to the Canada-Québec St. Lawrence Action Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Farly.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Authors Contribution

Luc Farly designed study, performed research, analyzed data, contributed new models, and wrote the paper; Christiane Hudon designed study, performed research, and wrote the paper; Antonia Cattaneo designed study and performed research; Gilbert Cabana designed study, performed research, analyzed data, contributed new models, and wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farly, L., Hudon, C., Cattaneo, A. et al. Seasonality of a Floodplain Subsidy to the Fish Community of a Large Temperate River. Ecosystems 22, 1823–1837 (2019). https://doi.org/10.1007/s10021-019-00374-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-019-00374-w

Keywords

Navigation