Skip to main content

Advertisement

Log in

Nutrient Biogeochemistry During the Early Stages of Delta Development in the Mississippi River Deltaic Plain

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Nutrient biogeochemistry associated with the early stages of soil development in deltaic floodplains has not been well defined. Such a model should follow classic patterns of soil nutrient pools described for alluvial ecosystems that are dominated by mineral matter high in phosphorus and low in carbon and nitrogen. A contrast with classic models of soil development is the anthropogenically enriched high nitrate conditions due to agricultural fertilization in upstream watersheds. Here we determine if short-term patterns of soil chemistry and dissolved inorganic nutrient fluxes along the emerging Wax Lake delta (WLD) chronosequence are consistent with conceptual models of long-term nutrient availability described for other ecosystems. We add a low nitrate treatment more typical of historic delta development to evaluate the role of nitrate enrichment in determining the net dinitrogen (N2) flux. Throughout the 35-year chronosequence, soil nitrogen and organic matter content significantly increased by an order of magnitude, whereas phosphorus exhibited a less pronounced increase. Under ambient nitrate concentrations (>60 μM), mean net N2 fluxes (157.5 μmol N m−2 h−1) indicated greater rates of gross denitrification than gross nitrogen fixation; however, under low nitrate concentrations (<2 μM), soils switched from net denitrification to net nitrogen fixation (−74.5 μmol N m−2 h−1). As soils in the WLD aged, the subsequent increase in organic matter stimulated net N2, oxygen, nitrate, and nitrite fluxes producing greater fluxes in more mature soils. In conclusion, soil nitrogen and carbon accumulation along an emerging delta chronosequence largely coincide with classic patterns of soil development described for alluvial floodplains, and substrate age together with ambient nitrogen availability can be used to predict net N2 fluxes during early delta evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Allen YC, Couvillion BR, Barras JA. 2012. Using multitemporal remote sensing imagery and inundation measures to improve land change estimates in coastal wetlands. Estuaries Coasts 35:190–200.

    Google Scholar 

  • An S, Gardner WS. 2002. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Mar Ecol Prog Ser 237:41–50.

    CAS  Google Scholar 

  • Anderson CJ, Mitsch WJ, Nairn RW. 2005. Temporal and spatial development of surface soil conditions at two created riverine marshes. J Environ Qual 34:2072–81.

    CAS  PubMed  Google Scholar 

  • Arango CP, Tank JL, Schaller JL, Royer TV, Bernot MJ, David MB. 2007. Benthic organic carbon influences denitrification in streams with high nitrate concentration. Freshw Biol 52:1210–22.

    CAS  Google Scholar 

  • Aspila KI, Agemian H, Chau SY. 1976. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187–97.

    CAS  PubMed  Google Scholar 

  • Bayley PB. 1995. Understanding large river floodplain ecosystems. Bioscience 45:153–8.

    Google Scholar 

  • Bedford BL, Walbridge MR, Aldous A. 1999. Patters in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80(7):2151–69.

    Google Scholar 

  • Bertics VJ, Sohm JA, Treude T, Chow CT, Capone DG, Fuhrman JA, Ziebis W. 2010. Burrowing deeper into benthic nitrogen cycling: impact of bioturbation on nitrogen fixation coupled to sulfate reduction. Mar Ecol Prog Ser 409:1–15.

    CAS  Google Scholar 

  • Bormann BT, Sidle RC. 1990. Changes in productivity and distribution of nutrients in a chronosequence at Glacier Bay National Park, Alaska. J Ecol 78:561–78.

    Google Scholar 

  • Boyd R, Penland S. 1988. A geomorphological model for Mississippi delta evolution. Gulf Coast Assoc Geol Soc Trans 38:443–52.

    Google Scholar 

  • Brinson MM, Bradshaw HD, Kane ES. 1984. Nutrient assimilative capacity of an alluvial floodplain swamp. J Appl Ecol 21:1041–57.

    Google Scholar 

  • Broussard W, Turner RE. 2009. A century of changing land-use and water-quality relationships in the continental US. Front Ecol Environ 7(6):302–7.

    Google Scholar 

  • Brown AG, Harper D, Peterken GF. 1997. European floodplain forests: structure, functioning and management. Glob Ecol Biogeogr Lett 6:169–78.

    Google Scholar 

  • Burgin AJ, Hamilton SK. 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5(2):89–96.

    Google Scholar 

  • Burt TP, Pinay G. 2005. Linking hydrology and biogeochemistry in complex landscapes. Prog Phys Geogr 29(3):297–316.

    Google Scholar 

  • Caffrey JN, Kemp WM. 1992. Influence of the submersed plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments. Limnol Oceanogr 37(7):1483–95.

    CAS  Google Scholar 

  • Chapin S, Walker LR, Fastie CL, Sharman LC. 1994. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64(2):149–75.

    Google Scholar 

  • Colt J. 1984. Computation of dissolved gas concentrations in water as functions of temperature, salinity, and pressure. Bethesda (MD): American Fisheries Society Special Publication. 14

    Google Scholar 

  • Cornwell JC, Kemp WM, Kana TM. 1999. Denitrification in coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review. Aquatic Ecol 33:41–54.

    CAS  Google Scholar 

  • Craft CB. 1997. Dynamics of nitrogen and phosphorus retention during wetland ecosystem succession. Wetl Ecol Manag 4:177–87.

    Google Scholar 

  • Craft C, Reader J, Sacco JN, Broome SW. 1999. Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecol Appl 9(4):1405–19.

    Google Scholar 

  • Craft C, Broome S, Campbell C. 2002. Fifteen years of vegetation and soil development after brackish-water marsh creation. Restor Ecol 10(2):248–58.

    Google Scholar 

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM. 1995. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76(5):1407–24.

    Google Scholar 

  • Criss RE, Shock EL. 2001. Flood enhancement through flood control. Geology 29:875–8.

    Google Scholar 

  • Crocker RL, Major J. 1955. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J Ecol 43:427–48.

    Google Scholar 

  • Currin CA, Joye SB, Paerl HW. 1996. Diel rates of N2-fixation and denitrification in a transplanted Spartina alterniflora marsh: implications for N-flux dynamics. Estuar Coast Shelf Sci 42:597–616.

    CAS  Google Scholar 

  • Davies BE. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Sci Soc Am Proc 38:150–1.

    Google Scholar 

  • Davis JL, Nowicki B, Wigand C. 2004. Denitrification in fringing salt marshes of Narragansett Bay, Rhode Island, USA. Wetlands 24(4):870–8.

    Google Scholar 

  • Day JW, Boesch DF, Clairain EJ, Kemp GP, Laska SB, Mitsch WJ, Orth K, Mashriqui H, Reed DJ, Shabman L, Simenstad CA, Streever BJ, Twilley RR, Watson CC, Wells JT, Whigham DF. 2007. Restoration of the Mississippi delta: lessons from Hurricanes Katrina and Rita. Science 315:1679–84.

    CAS  PubMed  Google Scholar 

  • DeLaune RD, Jugsujinda A. 2003. Denitrification potential in a Louisiana wetland receiving diverted Mississippi River water. Chem Ecol 19(6):411–18.

    CAS  Google Scholar 

  • DeLaune RD, Jugsujinda A, West JL, Johnson CB, Kongchum M. 2005. A screening of the capacity of Louisiana freshwater wetlands to process nitrate in diverted Mississippi River water. Ecol Eng 25:315–21.

    Google Scholar 

  • Dickson BA, Crocker RL. 1953. A chronosequence of soils and vegetation near Mt. Shasta, California. II. The development of the forest floor and the carbon and nitrogen profiles of the soils. J Soil Sci 4(2):142–56.

    CAS  Google Scholar 

  • Dodla SK, Wang JJ, DeLaune RD, Cook RL. 2008. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils. Sci Total Environ 407(1):471–80.

    CAS  PubMed  Google Scholar 

  • Eyre BD, Ferguson AJP. 2002. Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae- and macroalgae-dominated warm-temperate Australian lagoons. Mar Ecol Prog Ser 229:43–59.

    CAS  Google Scholar 

  • Eyre BD, Rysgaard S, Dalsgaard T, Christensen PB. 2002. Comparison of isotope pairing and N2:Ar methods for measuring sediment denitrification—assumptions, modifications, and implications. Estuaries 25(6A):1077–87.

    CAS  Google Scholar 

  • Firestone MK, Tiedje JM. 1979. Temporal change in nitrous oxide and dinitrogen from denitrification following onset of anaerobiosis. Appl Environ Microbiol 38(4):673–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fischetti M. 2001. Drowning New Orleans. Scientific Am 285:77–85.

    Google Scholar 

  • Fulweiler RW, Nixon SW, Buckley BA, Granger SL. 2007. Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature 448:180–2.

    CAS  PubMed  Google Scholar 

  • Fulweiler RW, Nixon SW, Buckley BA, Granger SL. 2008. Net sediment N2 fluxes in a coastal marine system—experimental manipulations and a conceptual model. Ecosystems 11:1168–80.

    CAS  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ. 2004. Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226.

    CAS  Google Scholar 

  • Gardner WS, McCarthy MJ, An S, Sobolev D, Sell KS, Brock D. 2006. Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries. Limnol Oceanogr 51(1, part 2):558–68.

    CAS  Google Scholar 

  • Giblin AE, Hopkinson CS, Tucker J. 1997. Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts. Estuaries 20(2):346–64.

    CAS  Google Scholar 

  • Giblin AE, Weston NB, Banta GT, Tucker J, Hopkinson CS. 2010. The effects of salinity on nitrogen losses from an oligohaline estuarine sediment. Estuaries Coasts 33:1054–68.

    CAS  Google Scholar 

  • Goolsby DA, Battaglin WA. 2001. Long-term changes in concentrations and flux of nitrogen in the Mississippi River Basin, USA. Hydrol Process 15:1209–26.

    Google Scholar 

  • Gorham E, Vitousek PM, Reiners WA. 1979. The regulation of chemical budgets over the course of terrestrial ecosystem succession. Annu Rev Ecol Syst 10:53–84.

    CAS  Google Scholar 

  • Groffman PM. 1994. Denitrification in freshwater wetlands. Curr Top Wetl Biogeochem 1:15–35.

    Google Scholar 

  • Groffman PM, Altabet MA, Böhlke JK, Butterbach-Bahl K, David MB, Firestone MK, Giblin AE, Kana TM, Nielsen LP, Voytek MA. 2006. Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol Appl 16(6):2091–122.

    PubMed  Google Scholar 

  • Hamersley MR, Howes BL. 2003. Contribution of denitrification to nitrogen, carbon, and oxygen cycling in tidal creek sediments of a New England salt marsh. Mar Ecol Prog Ser 262:55–69.

    CAS  Google Scholar 

  • Hargis TG, Twilley RR. 1994. Multi-depth probes for measuring oxidation–reduction (redox) potential in wetland soils. J Sediment Res 64:684–5.

    Google Scholar 

  • Hedin LO, Vitousek PM, Matson PA. 2003. Nutrient losses over four million years of tropical forest development. Ecology 84(9):2231–55.

    Google Scholar 

  • Hernandez ME, Mitsch WJ. 2007. Denitrification potential and organic matter as affected by vegetation community, wetland age, and plant introduction in created wetlands. J Environ Qual 36:333–42.

    CAS  PubMed  Google Scholar 

  • Hobbie EA, Macko SA, Shugart HH. 1998. Patterns in N dynamics and N isotopes during primary succession in Glacier Bay, Alaska. Chem Geol 152:3–11.

    CAS  Google Scholar 

  • Holm GO, Sasser CE. 2001. Differential salinity response between two Mississippi River subdeltas: implications for changes in plant composition. Estuaries 24(1):78–89.

    Google Scholar 

  • Hopfensperger KN, Kaushal SS, Findlay SEG, Cornwell JC. 2009. Influence of plant communities on denitrification in a tidal freshwater marsh of the Potomac River, United States. J Environ Qual 38:618–26.

    CAS  PubMed  Google Scholar 

  • Hopkinson CS, Giblin AE. 2008. Nitrogen dynamics of coastal salt marshes. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ, Eds. Nitrogen in the marine environment. New York: Elsevier Academic Press. p 991–1036.

    Google Scholar 

  • Howarth RW, Marino R. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51(1):364–76.

    CAS  Google Scholar 

  • Howarth RW, Marino R, Cole JJ. 1988. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol Oceanogr 33:688–701.

    CAS  Google Scholar 

  • Johnson WB, Sasser CE, Gosselink JG. 1985. Succession of vegetation in an evolving river delta, Atchafalaya Bay, Louisiana. J Ecol 73(3):973–86.

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE. 1989. The flood pulse concept in river–floodplain systems. Can Special Publ Fish Aquat Sci 106:110–27.

    Google Scholar 

  • Kana TM, Darkangelo C, Hunt MD, Oldham JB, Bennett GE, Cornwell JC. 1994. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal Chem 66:4166–70.

    CAS  Google Scholar 

  • Keddy PA, Campbell D, McFalls T, Shaffer GP, Moreau R, Dranguet C, Heleniak R. 2007. The wetlands of lakes Pontchartrain and Maurepas: past, present and future. Environ Rev 15:43–77.

    Google Scholar 

  • Kim W, Mohrig D, Twilley R, Paola C, Parker G. 2009. Is it feasible to build new land in the Mississippi River delta. EOS Trans Am Geophys Union 90(42):373–4.

    Google Scholar 

  • Knowles R. 1982. Denitrification. Microbiol Mol Biol Rev 46(1):43–70.

    CAS  Google Scholar 

  • Krull K, Craft C. 2009. Ecosystem development of a sandbar emergent tidal marsh, Altamaha River Estuary, Georgia, USA. Wetlands 29(1):314–22.

    Google Scholar 

  • Lane RR, Madden CJ, Day JW, Solet DJ. 2011. Hydrologic and nutrient dynamics of a coastal bay and wetland receiving discharge from the Atchafalaya River. Hydrobiologia 658(1):55–66.

    CAS  Google Scholar 

  • Lee RY, Joye SB. 2006. Seasonal patterns of nitrogen fixation and denitrification in oceanic mangrove habitats. Mar Ecol Prog Ser 307:127–41.

    Google Scholar 

  • Lichter J. 1998. Primary succession and forest development on coastal Lake Michigan sand dunes. Ecol Monogr 68(4):487–510.

    Google Scholar 

  • Lindau CW, DeLaune RD. 1991. Dinitrogen and nitrous oxide emission and entrapment in Spartina alterniflora saltmarsh soils following addition of N-15 labeled ammonium and nitrate. Estuar Coast Shelf Sci 32:161–72.

    CAS  Google Scholar 

  • Lindau CW, DeLaune RD, Jones GL. 1988. Fate of added nitrate and ammonium-nitrogen entering a Louisiana gulf coast swamp forest. J Water Pollut Control Fed 60(3):386–90.

    CAS  Google Scholar 

  • Lindau CW, DeLaune RD, Pardue JH. 1994. Inorganic nitrogen processing and assimilation in a forested wetland. Hydrobiologia 277:171–8.

    CAS  Google Scholar 

  • Lindau CW, DeLaune RD, Scaroni AE, Nyman JA. 2008. Denitrification in cypress swamp within the Atchafalaya River Basin, Louisiana. Chemosphere 70:886–94.

    CAS  PubMed  Google Scholar 

  • Louisiana Coastal Master Plan. 2012. http://www.coastalmasterplan.louisiana.gov/. Accessed May 5, 2012.

  • McCarthy MJ, Lavrentyev PJ, Yang L, Zhang L, Chen Y, Qin B, Gardner WS. 2007. Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China). Hydrobiologia 581:195–207.

    CAS  Google Scholar 

  • McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–12.

    CAS  Google Scholar 

  • Megonigal JP, Neubauer SC. 2009. Biogeochemistry of tidal freshwater wetlands. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM, Eds. Coastal wetlands: an integrated ecosystem approach. New York: Elsevier Academic Press. p 535–62.

    Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR. 2002. Responses of coastal wetlands to rising sea level. Ecology 83(10):2869–77.

    Google Scholar 

  • Mulder T, Syvitski JPM. 1996. Climatic and morphologic relationships of rivers. Implications of sea level fluctuations on river loads. J Geol 104:509–23.

    Google Scholar 

  • National Climatic Data Center. 2012. http://www.ncdc.noaa.gov/. Accessed February 23, 2012.

  • National Oceanic and Atmospheric Administration (NOAA) Tides and Currents. 2012. http://tidesandcurrents.noaa.gov/. Accessed May 8, 2012.

  • Neill C, Deegan LA. 1986. The effect of Mississippi River delta lobe development on the habitat composition and diversity of Louisiana coastal wetlands. Am Midl Nat 116:296–303.

    Google Scholar 

  • Nielsen LP, Glud RN. 1996. Denitrification in a coastal sediment measured in situ by the nitrogen isotope pairing technique applied to a benthic flux chamber. Mar Ecol Prog Ser 137:181–6.

    Google Scholar 

  • Noe GB, Hupp CR, Rybicki NB. 2013. Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands. Ecosystems 16:75–94.

    CAS  Google Scholar 

  • Olff H, De Leeuw J, Bakker JP, Platerink RJ, van Wijnen HJ, De Munck W. 1997. Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. J Ecol 85(6):799–814.

    Google Scholar 

  • Paola C, Twilley RR, Edmonds DA, Kim W, Mohrig D, Parker G, Viparelli E, Voller VR. 2011. Natural processes in delta restoration: application to the Mississippi delta. Annu Rev Mar Sci 3:67–91.

    Google Scholar 

  • Parsons TR, Maita Y, Lalli CM. 1984. A manual of chemical and biological methods for seawater analysis. New York: Pergamon Press.

    Google Scholar 

  • Pearson HL, Vitousek PM. 2002. Soil phosphorus fractions and symbiotic nitrogen fixation across a substrate-age gradient in Hawaii. Ecosystems 5:587–96.

    CAS  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA. 2007. Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–44.

    Google Scholar 

  • Piehler MF, Currin CA, Cassanova R, Paerl HW. 1998. Development and N2-fixing activity of the benthic microbial community in transplanted Spartina alterniflora marshes in North Carolina. Restor Ecol 6(3):290–6.

    Google Scholar 

  • Poach ME, Faulkner SP. 2007. Effect of river sediment on phosphorus chemistry of similarly aged natural and created wetlands in the Atchafalaya delta, Louisiana, USA. J Environ Qual 36(4):1217–23.

    CAS  PubMed  Google Scholar 

  • Poulin P, Pelletier E, Saint-Louis R. 2007. Seasonal variability of denitrification efficiency in northern salt marshes: an example from the St. Lawrence Estuary. Mar Environ Res 63:490–505.

    CAS  PubMed  Google Scholar 

  • Rabalais NN, Turner RE, Dortch Q, Justic D, Bierman VJ, Wiseman WJ. 2002. Nutrient-enhanced productivity in the northern Gulf of Mexico: past, present and future. Hydrobiologia 475:39–63.

    Google Scholar 

  • Reddy KR, Patrick WH, Lindau CW. 1989. Nitrification–denitrification at the plant root–sediment interface in wetlands. Limnol Oceanogr 34(6):1004–13.

    CAS  Google Scholar 

  • Redfield AC. 1958. The biological control of chemical factors in the environment. Am Scientist 46:205–21.

    CAS  Google Scholar 

  • Riley RH, Vitousek PM. 1995. Nutrient dynamics and nitrogen trace gas flux during ecosystem development in montane rain forest. Ecology 76(1):292–304.

    Google Scholar 

  • Risgaard-Petersen N, Jensen K. 1997. Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnol Oceanogr 42(3):529–37.

    CAS  Google Scholar 

  • Roberts HH, Walker N, Cunningham R, Kemp GP, Majersky S. 1997. Evolution of sedimentary architecture and surface morphology: Atchafalaya and Wax Lake deltas, Louisiana (1973–1994). Gulf Coast Assoc Geol Soc Trans 47:477–84.

    Google Scholar 

  • Rysgaard S, Risgaard-Petersen N, Nielsen LP, Revsbech NP. 1993. Nitrification and denitrification in lake and estuarine sediments measured by the 15N dilution technique and isotope pairing. Appl Environ Microbiol 59(7):2093–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • SAS Institute. 2012. http://www.sas.com/. Accessed February 23, 2012.

  • Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, Hill AW, Costello EK, Meyer AF, Neff JC, Martin AM. 2008. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc B 275:2793–802.

    CAS  PubMed  Google Scholar 

  • Scott JT, McCarthy MJ, Gardner WS, Doyle RD. 2008. Denitrification, dissimilatory nitrate reduction to ammonium, and nitrogen fixation along a nitrate concentration gradient in a created freshwater wetland. Biogeochemistry 87:99–111.

    CAS  Google Scholar 

  • Seitzinger SP. 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33(4):702–24.

    CAS  Google Scholar 

  • Seitzinger SP, Nixon SW. 1984. Denitrification and nitrous oxide production in a coastal marine ecosystem. Limnol Oceanogr 29(1):73–83.

    CAS  Google Scholar 

  • Selmants PC, Hart SC. 2008. Substrate age and tree islands influence carbon and nitrogen dynamics across a retrogressive semiarid chronosequence. Glob Biogeochem Cycles 22:GB1021.

    Google Scholar 

  • Selmants PC, Hart SC. 2010. Phosphorus and soil development: does the Walker and Syers model apply to semiarid ecosystems? Ecology 91(2):474–84.

    PubMed  Google Scholar 

  • Shaffer GP, Sasser CE, Gosselink JG, Rejmanek M. 1992. Vegetation dynamics in the emerging Atchafalaya delta, Louisiana, USA. J Ecol 80(4):677–87.

    Google Scholar 

  • Sherr BF, Payne WJ. 1978. Effect of Spartina alterniflora root-rhizome system on salt marsh soil denitrifying bacteria. Appl Environ Microbiol 35(4):724–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silvennoinen H, Liikanen A, Torssonen J, Stange CF, Martikainen PJ. 2008. Denitrification and N2O effluxes in the Bothnian Bay (northern Baltic Sea) river sediments as affected by temperature under different oxygen concentrations. Biogeochemistry 88:63–72.

    CAS  Google Scholar 

  • Smith CJ, DeLaune RD. 1983. Gaseous nitrogen losses from Gulf Coast marshes. Northeast Gulf Sci 6(1):1–8.

    Google Scholar 

  • Strickland JDH, Parsons TR. 1972. A practical handbook of sea-water analysis. Fish Res Board Can 167:1–310.

    Google Scholar 

  • Swenson EM, Sasser CE. 1992. Water level fluctuations in the Atchafalaya delta, Louisiana: tidal forcing versus river forcing. In: Prandle D, Ed. Dynamics and exchanges in estuaries and the coastal zone, coastal and estuarine studies. Washington (DC): American Geophysical Union. p 191–208.

    Google Scholar 

  • Tackett NW, Craft CB. 2010. Ecosystem development on a coastal barrier island dune chronosequence. J Coast Res 264:736–42.

    Google Scholar 

  • Taylor RS. 1904. Levees, outlets and reservoirs as means for protection against overflow of the alluvial lands of the Mississippi valley below Cairo. Science 19(485):601–9.

    CAS  PubMed  Google Scholar 

  • Thompson SP, Paerl HW, Go MC. 1995. Seasonal patterns of nitrification and denitrification in a natural and a restored salt marsh. Estuaries 18(2):399–408.

    CAS  Google Scholar 

  • Twilley RR, Rivera-Monroy V. 2009. Sediment and nutrient tradeoffs in restoring Mississippi River delta: restoration vs eutrophication. J Contemp Water Res Educ 141:39–44.

    Google Scholar 

  • Tyler AC, Zieman JC. 1999. Patterns of development in the creekbank region of a barrier island Spartina alterniflora marsh. Mar Ecol Prog Ser 180:161–77.

    Google Scholar 

  • Tyler AC, Mastronicola TA, McGlathery KJ. 2003. Nitrogen fixation and nitrogen limitation of primary production along a natural marsh chronosequence. Oecologia 136:431–8.

    PubMed  Google Scholar 

  • van Cleve K, Chapin FS, Dyrness CT, Viereck LA. 1991. Element cycling in taiga forests: state-factor control. BioScience 41(2):78–88.

    Google Scholar 

  • Vitousek PM, Farrington H. 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:63–75.

    CAS  Google Scholar 

  • Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115.

    Google Scholar 

  • Vitousek PM, van Cleve K, Balakrishnan N, Mueller-Dombios D. 1983. Soil development and nitrogen turnover in montane rainforest soils on Hawai’i. Biotropica 15(4):268–74.

    Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG. 1997. Technical report: human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–50.

    Google Scholar 

  • Walker TW, Syers JK. 1976. The fate of phosphorus during pedogenesis. Geoderma 15:1–19.

    CAS  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–13.

    CAS  PubMed  Google Scholar 

  • Wellner R, Beaubouef R, Van Wagoner J, Roberts H, Sun T. 2006. Jet-plume depositional bodies—the primary building blocks of Wax Lake delta. Gulf Coast Assoc Geol Soc Trans 55:867–909.

    Google Scholar 

  • Wolf KL, Ahn C, Noe GB. 2011. Development of soil properties and nitrogen cycling in created wetlands. Wetlands 31:699–712.

    Google Scholar 

  • Yu K, DeLaune RD, Boeckx P. 2006. Direct measurement of denitrification activity in a Gulf coast freshwater marsh receiving diverted Mississippi River water. Chemosphere 65:2449–55.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by a fellowship from the State of Louisiana Board of Regents, U.S. Shell, the Northern Gulf Institute, and the National Science Foundation via the National Center for Earth-Surface Dynamics (EAR-0120914). We would like to thank Benjamin Branoff, Azure Bevington, Edward Castañeda, Theresa Crupi, Emma-Leah Hale, Jennifer Ladner, William Ohlenforst, Sarah Simmons, and Havalend Steinmuller for field assistance and sample preparation. Special thanks to Thomas Blanchard for laboratory support. Finally, we would like to acknowledge two anonymous reviewers for their constructive comments on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly M. Henry.

Additional information

Author contributions

KMH designed the study, carried out field and laboratory work, performed data analyses, and wrote the paper with contributions from RRT. RRT conceived of the study, provided funding, and contributed to data interpretation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 840 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, K.M., Twilley, R.R. Nutrient Biogeochemistry During the Early Stages of Delta Development in the Mississippi River Deltaic Plain. Ecosystems 17, 327–343 (2014). https://doi.org/10.1007/s10021-013-9727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-013-9727-3

Keywords

Navigation