Skip to main content

Advertisement

Log in

Nutrient and Carbon Limitation on Decomposition in an Amazonian Moist Forest

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Tropical forests determine global biogeochemical cycles to a large extent, but control factors for key ecosystem processes such as decomposition remain poorly understood. With a full-factorial C (cellulose), N (urea), and P (phosphate) fertilization experiment, we tested the relative importance of C and nutrient limitation on litter decomposition in a mature lowland moist forest of French Guiana. Despite the previously demonstrated litter C quality control over decomposition and the very low soil P content (0.1 mg g−1 of soil) at our study site, fertilization with C or P alone did not increase the decomposition of a wide range of litter types (N:P ratios between 20 and 80). Nitrogen fertilization alone also had no effect on decomposition. However, the combined fertilization with N and P resulted in up to 33.5% more initial litter mass lost, with an increasing effect with wider litter N:P ratios. Soil fauna strongly stimulated litter mass loss and enhanced nutrient fertilization effects. Moreover, nutrient effects on decomposition increased with additional C fertilization in the presence of fauna. Our results suggest that increased N availability is required for a positive P effect on decomposition in the studied P-poor tropical forest. Further stimulation of decomposition by C amendment through priming indicates energy limitation of decomposers that is co-determined by nutrient availability. The demonstrated intricate control of the key resources C, N, and P on decomposition calls for an intensified research effort on multiple resource limitation on key processes in tropical forests and how they change under multiple human impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adair EC, Parton WJ, Del Grosso SJ, Silver WL, Harmon ME, Hall SA, Burkes IC, Hart SC. 2008. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob Change Biol 14:2636–60.

    Google Scholar 

  • Blagodatsky S, Blagodatskaya E, Yuyukina T, Kuzyakov Y. 2010. Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biol Biochem 42:1275–83.

    Article  CAS  Google Scholar 

  • Boberg J, Finlay RD, Stenlid J, Nasholm T, Lindahl BD. 2008. Glucose and ammonium additions affect needle decomposition and carbon allocation by the litter degrading fungus Mycena epipterygia. Soil Biol Biochem 40:995–9.

    Article  CAS  Google Scholar 

  • Bonal D, Bosc A, Ponton S, Goret J, Burban B, Gross P, Bonnefond J, Elbers J, Longdoz B, Epron D, Guehl J, Granier A. 2008. Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Glob Change Biol 14:1917–33.

    Article  Google Scholar 

  • Cadisch G, Giller KE. 1997. Book driven by nature: plant litter quality and decomposition. Wallingford: CAB International.

    Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–7.

    Article  CAS  Google Scholar 

  • Chigineva NI, Aleksandrova AV, Tiunov AV. 2009. The addition of labile carbon alters litter fungal communities and decreases litter decomposition rates. Appl Soil Ecol42:264–70.

    Article  Google Scholar 

  • Cleveland CC, Liptzin D. 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–52.

    Article  Google Scholar 

  • Cleveland CC, Reed SC, Townsend AR. 2006. Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503.

    Article  PubMed  Google Scholar 

  • Coq S, Souquet JM, Meudec E, Cheynier V, Hättenschwiler S. 2010. Interspecific variation in leaf litter tannins drives decomposition in a tropical rainforest of French Guiana. Ecology 91:2080–91.

    Article  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–71.

    Article  PubMed  Google Scholar 

  • Cross WF, Benstead JP, Rosemond AD, Wallace JB. 2003. Consumer-resource stoichiometry in detritus-based streams. Ecol Lett 6:721–32.

    Article  Google Scholar 

  • Cusack DF, Chou WW, Yang WH, Harmon ME, Silver WL, Lidet T. 2009. Controls on long-term root and leaf litter decomposition in neotropical forests. Glob Change Biol 15:1339–55.

    Article  Google Scholar 

  • De Nobili M, Contin M, Mondini C, Brookes PC. 2001. Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol Biochem 33:1163–70.

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–42.

    Article  PubMed  Google Scholar 

  • Enriquez S, Duarte CM, Sandjensen K. 1993. Patterns in decomposition rates among photosynthetic organisms—the importance of detritus C–N–P content. Oecologia 94:457–71.

    Article  Google Scholar 

  • Fanin N, Hättenschwiler S, Barantal S, Schimann H, Fromin N. 2011. Does variability in litter quality determine soil microbial respiration in an Amazonian rainforest? Soil Biol Biochem 43:1014–22.

    Article  CAS  Google Scholar 

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–9.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L. 2003. The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–43.

    Article  CAS  Google Scholar 

  • Gonzalez G, Seastedt TR. 2001. Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82:955–64.

    Google Scholar 

  • Gourlet-Fleury S, Ferry B, Molino JF, Petronelli P, Schmitt L. 2004. Experimental plots: key features. In: Gourlet-Fleury S, Guehl JM, Laroussinie O, Eds. Ecology and management of a neotropical rainforest: lessons drawn from Paracou, a long-term experimental research site in French Guiana. Paris: Elsevier. p 3–52.

    Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE. 2011. Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–62.

    Article  PubMed  Google Scholar 

  • Hättenschwiler S, Aeschlimann B, Couteaux MM, Roy J, Bonal D. 2008. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol 179:165–75.

    Article  PubMed  Google Scholar 

  • Hättenschwiler S, Bracht Jørgensen H. 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol 98:754–63.

    Article  Google Scholar 

  • Hättenschwiler S, Coq S, Barantal S, Handa IT. 2011. Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytol 189:893–1209.

    Article  Google Scholar 

  • Hedin LO, Brookshire ENJ, Menge DNL, Barron AR. 2009. The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–35.

    Article  Google Scholar 

  • Hessen DO, Agren GI, Anderson TR, Elser JJ, De Ruiter PC. 2004. Carbon, sequestration in ecosystems: the role of stoichiometry. Ecology 85:1179–92.

    Article  Google Scholar 

  • Hobbie SE. 2000. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian Montane forest. Ecosystems 3:484–94.

    Article  CAS  Google Scholar 

  • Hobbie SE, Vitousek PM. 2000. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:1867–77.

    Article  Google Scholar 

  • Holdridge LR. 1967. Life zone ecology. San José: Tropical Science Center.

    Google Scholar 

  • Houlton BZ, Sigman DM, Hedin LO. 2006. Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Nat Acad Sci USA 103:8745–50.

    Article  PubMed  CAS  Google Scholar 

  • Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB. 2008. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43.

    PubMed  Google Scholar 

  • Knorr M, Frey SD, Curtis PS. 2005. Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–7.

    Article  Google Scholar 

  • Koren I, Kaufman YJ, Washington R, Todd MC, Rudich Y, Martins JV, Rosenfeld D. 2006. The Bodele depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environ Res Lett 1.

  • Kuzyakov Y, Friedel JK, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–98.

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Hill PW, Jones DL. 2007. Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 290:293–305.

    Article  CAS  Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Martin S, Spain A, Toutain F, Barois I, Schaefer R. 1993. A hierarchical model for decomposition in terrestrial ecosystems—application to soils of the humid tropics. Biotropica 25:130–50.

    Article  Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Richardson AD, Reichsteins M, Papale D, Piao SL, Schulzes ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beers C, Bernhoffer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grunwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolar P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA. 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13:2509–37.

    Article  Google Scholar 

  • Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li WH, Nobre CA. 2008. Climate change, deforestation, and the fate of the Amazon. Science 319:169–72.

    Article  PubMed  CAS  Google Scholar 

  • McGlynn TP, Salinas DJ, Dunn RR, Wood TE, Lawrence D, Clark DA. 2007. Phosphorus limits tropical rain forest litter fauna. Biotropica 39:50–3.

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–6.

    Article  CAS  Google Scholar 

  • Nardoto GB, Henry Balbaud Ometto JP, Ehleringer JR, Higuchi N, da Cunha Bustamante MM, Martinelli LA. 2008. Understanding the influences of spatial patterns on N availability within the Brazilian Amazon Forest. Ecosystems 11:1234–46.

    Article  CAS  Google Scholar 

  • Orwin KH, Wardle DA, Greenfield LG. 2006. Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology 87:580–93.

    Article  PubMed  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–4.

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro J, Bates D. 2009. Book Mixed-effects models in S and SPLUS. Berlin: Springer.

    Google Scholar 

  • Porder S, Vitousek PM, Chadwick OA, Chamberlain CP, Hilley GE. 2007. Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10:159–71.

    Article  Google Scholar 

  • Posada JM, Schuur EAG. 2011. Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia 165:783–95.

    Article  PubMed  Google Scholar 

  • Powers JS, Montgomery RA, Adair EC, Brearley FQ, DeWalt SJ, Castanho CT, Chave J, Deinert E, Ganzhorn JU, Gilbert ME, Gonzalez-Iturbe JA, Bunyavejchewin S, Grau HR, Harms KE, Hiremath A, Iriarte-Vivar S, Manzane E, de Oliveira AA, Poorter L, Ramanamanjato JB, Salk C, Varela A, Weiblen GD, Lerdau MT. 2009. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J Ecol 97:801–11.

    Article  CAS  Google Scholar 

  • Powers JS, Salute S. 2011. Macro- and micronutrient effects on decomposition of leaf litter from two tropical tree species: inferences from a short-term laboratory incubation. Plant Soil 346:245–57.

    Article  CAS  Google Scholar 

  • Quesada CA, Lloyd J, Schwarz M, Patino S, Baker TR, Czimczik C, Fyllas NM, Martinelli L, Nardoto GB, Schmerler J, Santos AJB, Hodnett MG, Herrera R, Luizao FJ, Arneth A, Lloyd G, Dezzeo N, Hilke I, Kuhlmann I, Raessler M, Brand WA, Geilmann H, Moraes JO, Carvalho FP, Araujo RN, Chaves JE, Cruz OF, Pimentel TP, Paiva R. 2010. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–41.

    Article  CAS  Google Scholar 

  • Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM. 2006. Temperature influences carbon accumulation in moist tropical forests. Ecology 87:76–87.

    Article  PubMed  Google Scholar 

  • Roy J, Hättenschwiler S, Domenach AM. 2005. Tree diversity and soil biology: a new research program in French Guiana. In: Binkley D, Menyailo O, Eds. Tree species effects on soils: implications for global change. Dordrecht: Kluwer. p 337–48.

    Chapter  Google Scholar 

  • Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ. 2011. Soil carbon release enhanced by increased tropical forest litterfall. Nat Clim Change 1:304–7.

    Article  CAS  Google Scholar 

  • Scheu S, Schaefer M. 1998. Bottom-up control of the soil macrofauna community in a beechwood on limestone: manipulation of food resources. Ecology 79:1573–85.

    Article  Google Scholar 

  • Sterner RW, Elser J. 2002. Book ecological stoichiometry : the biology of elements from molecules to the biosphere. Princeton (NJ): Princeton University Press.

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM. 1979. Book decomposition in terrestrial ecosystems. Berkeley: University of California Press.

    Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC. 2008. The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–31.

    Article  PubMed  Google Scholar 

  • Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JWC. 2011. Multi-element regulation of the tropical forest carbon cycle. Front Ecol Environ 9:9–17.

    Article  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15.

    Article  PubMed  Google Scholar 

  • Walker TW, Syers JK. 1976. Fate of phosphorus during pedogenesis. Geoderma 15:1–19.

    Article  CAS  Google Scholar 

  • Wall DH, Bradford MA, St John MG, Trofymow JA, Behan-Pelletier V, Bignell DDE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Johnson DL, Jones TH, Kovarova M, Kranabetter JM, Kutny L, Lin KC, Maryati M, Masse D, Pokarzhevskii A, Rahman H, Sabara MG, Salamon JA, Swift MJ, Varela A, Vasconcelos HL, White D, Zou XM. 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Change Biol 14:2661–77.

    Google Scholar 

Download references

Acknowledgments

We are grateful for the field and laboratory assistance by Audin Patient. We thank Elianne Louisiana, Lindon Yansen and Frits Kwasie for field assistance, Elisabeth Hättenschwiler for the help with litter bag confection, Margaret Amui-Vedel, Nicolas Fanin, Patrick Schevin and Flavien Branchereau for their assistance during final harvest, and Sylvain Coq for providing chemical data of the litter types used. This research was funded through a CNRS “PIR Amazonie II” grant to S·H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidy Schimann.

Additional information

Author Contributions

SH, NF, HS, and SB conceived the study, SB, HS, NF, and SH performed research, SB analyzed data, SB and SH wrote the paper. All authors discussed the results and the structure of the paper, commented and revised the manuscript text.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 120 kb)

Supplementary material 2 (DOC 128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barantal, S., Schimann, H., Fromin, N. et al. Nutrient and Carbon Limitation on Decomposition in an Amazonian Moist Forest. Ecosystems 15, 1039–1052 (2012). https://doi.org/10.1007/s10021-012-9564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9564-9

Keywords

Navigation