Skip to main content

Advertisement

Log in

Controls over Soil Nitrogen Pools in a Semiarid Grassland Under Elevated CO2 and Warming

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Long-term responses of terrestrial ecosystems to the combined effects of warming and elevated CO2 (eCO2) will likely be regulated by N availability. The stock of soil N determines availability for organisms, but also influences loss to the atmosphere or groundwater. eCO2 and warming can elicit changes in soil N via direct effects on microbial and plant activity, or indirectly, via soil moisture. Detangling the interplay of direct- and moisture-mediated impacts on soil N and the role of organisms in controlling soil N will improve predictions of ecosystem-level responses. We followed individual soil N pools over two growing seasons in a semiarid temperate grassland, at the Prairie Heating and CO2 Enrichment experiment. We evaluated relationships of N pools with environmental factors and explored the role of plants by assessing plant biomass, plant N, and plant inputs to soil. We also assessed N forms in plots with and without vegetation to remove plant-mediated effects. Our study demonstrated that the effects of warming and eCO2 are highly dependent on individual N form and on year. In this water-constrained grassland, eCO2, warming and their combination appear to impact soil N pools through a complex combination of direct- and moisture-mediated effects. eCO2 decreased NO3 but had neutral to positive effects on NH4 + and dissolved organic N (DON), particularly in a wet year. Warming increased NO3 availability due to a combination of indirect drying and direct temperature-driven effects. Warming also increased DON only in vegetated plots, suggesting plant mediation. Our results suggest that impacts of combined eCO2 and warming are not always equivalent for plant and soil pools; although warming can help offset the decrease in NO3 availability for plants under eCO2, the NO3 pool in soil is mainly driven by the negative effects of eCO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Allison SD, Treseder KK. 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Change Biol 14:2898–909.

    Article  Google Scholar 

  • Baggs EM, Richter M, Cadisch G, Hartwig UA. 2003. Denitrification in grass swards is increased under elevated atmospheric CO2. Soil Biol Biochem 35:729–32.

    Article  CAS  Google Scholar 

  • Barnard R, Barthes L, Leadley PW. 2006a. Short-term uptake of N-15 by a grass and soil micro-organisms after long-term exposure to elevated CO2. Plant Soil 280:91–9.

    Article  CAS  Google Scholar 

  • Barnard R, Le Roux X, Hungate BA, Cleland EE, Blankinship JC, Barthes L, Leadley PW. 2006b. Several components of global change alter nitrifying and denitrifying activities in an annual grassland. Funct Ecol 20:557–64.

    Article  Google Scholar 

  • Beier C, Emmett BA, Penuelas J, Schmidt IK, Tietema A, Estiarte M, Gundersen P, Llorens L, Riis-Nielsen T, Sowerby A, Gorissen A. 2008. Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Sci Total Environ 407:692–7.

    Article  PubMed  CAS  Google Scholar 

  • Bloor JMG, Niboyet A, Leadley PW, Barthes L. 2009. CO2 and inorganic N supply modify competition for N between co-occurring grass plants, tree seedlings and soil microorganisms. Soil Biol Biochem 41:544–52.

    Article  CAS  Google Scholar 

  • Carrillo Y, Pendall E, Dijkstra FA, Morgan JA, Newcomb JM. 2011. Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant Soil 347:339–50.

    Article  CAS  Google Scholar 

  • Damin V, Trivelin PCO, Franco HCJ, Barbosa TG. 2010. Nitrogen 15N loss in the soil-plant system after herbicide application on Pennisetum glaucum. Plant Soil 328:245–52.

    Article  CAS  Google Scholar 

  • de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C. 2006. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Change Biol 12:2077–91.

    Article  Google Scholar 

  • de Graaff MA, Van Kessel C, Six J. 2009. Rhizodeposition-induced decomposition increases N availability to wild and cultivated wheat genotypes under elevated CO2. Soil Biol Biochem 41:1094–103.

    Article  Google Scholar 

  • Dermody O, Weltzin JF, Engel EC, Allen P, Norby RJ. 2007. How do elevated CO2, warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem? Plant Soil 301:255–66.

    Article  CAS  Google Scholar 

  • Dijkstra FA, Pendall E, Mosier AR, King JY, Milchunas DG, Morgan JA. 2008. Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland. Funct Ecol 22:975–82.

    Article  Google Scholar 

  • Dijkstra FA, Blumenthal D, Morgan JA, Pendall E, Carrillo Y, Follett RF. 2010. Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. New Phytol 187:426–37.

    Article  PubMed  CAS  Google Scholar 

  • Ebersberger D, Niklaus PA, Kandeler E. 2003. Long term CO2 enrichment stimulates N-mineralisation and enzyme activities in calcareous grassland. Soil Biol Biochem 35:965–72.

    Article  CAS  Google Scholar 

  • Fitter AH, Self GK, Brown TK, Bogie DS, Graves JD, Benham D, Ineson P. 1999. Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature. Oecologia 120:575–81.

    Article  Google Scholar 

  • Harte J, Torn MS, Chang FR, Feifarek B, Kinzig AP, Shaw R, Shen K. 1995. Global warming and soil microclimate -results from a meadow-warming experiment. Ecol Appl 5:132–50.

    Article  Google Scholar 

  • Heimann M, Reichstein M. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–92.

    Article  PubMed  CAS  Google Scholar 

  • Hovenden MJ, Newton PCD, Carran RA, Theobald P, Wills KE, Schoor JKV, Williams AL, Osanai Y. 2008. Warming prevents the elevated CO2-induced reduction in available soil nitrogen in a temperate, perennial grassland. Glob Change Biol 14:1018–24.

    Article  Google Scholar 

  • Hu S, Chapin FS, Firestone MK, Field CB, Chiariello NR. 2001. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–91.

    Article  PubMed  CAS  Google Scholar 

  • Hungate BA, Chapin FS, Zhong H, Holland EA, Field CB. 1997. Stimulation of grassland nitrogen cycling under carbon dioxide enrichment. Oecologia 109:149–53.

    Article  Google Scholar 

  • Hungate BA, van Groenigen KJ, Six J, Jastrow JD, Lue YQ, de Graaff MA, van Kessel C, Osenberg CW. 2009. Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. Glob Change Biol 15:2020–34.

    Article  Google Scholar 

  • Ineson P, Coward PA, Hartwig UA. 1998. Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: The Swiss free air carbon dioxide enrichment experiment. Plant Soil 198:89–95.

    Article  CAS  Google Scholar 

  • Jin VL, Evans RD. 2010. Elevated CO2 increases plant uptake of organic and inorganic N in the desert shrub Larrea tridentata. Oecologia 163:257–66.

    Article  PubMed  Google Scholar 

  • Kimball BA, Conley MM, Wang S, Lin X, Luo C, Morgan J, Smith D. 2008. Infrared heater arrays for warming ecosystem field plots. Glob Change Biol 14:309–20.

    Article  Google Scholar 

  • Korner C, Arnone JA. 1992. Responses to elevated carbon-dioxide in artificial tropical ecosystems. Science 257:1672–5.

    Article  PubMed  CAS  Google Scholar 

  • Lagomarsino A, Moscatelli MC, Hoosbeek MR, De Angelis P, Grego S. 2008. Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation. Plant Soil 308:131–47.

    Article  CAS  Google Scholar 

  • Langley JA, Megonigal JP. 2010. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466:96–9.

    Article  PubMed  CAS  Google Scholar 

  • Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR, Ambus PER, Arndal MF, Carter MS, Christensen S, Holmstrup M, Ibrom A, Kongstad J, Van Der Linden L, Maraldo K, Michelsen A, Mikkelsen TN, Pilegaard KIM, PriemÉ A, Ro-Poulsen H, Schmidt IK, Selsted MB, Stevnbak K. 2010. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments. Glob Change Biol 17:1884–99.

    Article  Google Scholar 

  • Luo YQ. 2007. Terrestrial carbon-cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712.

    Article  Google Scholar 

  • Luo YQ, Hui DF, Zhang DQ. 2006. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63.

    Article  PubMed  Google Scholar 

  • Malchair S, De Boeck HJ, Lemmens C, Merckx R, Nijs I, Ceulemans R, Carnol M. 2010. Do climate warming and plant species richness affect potential nitrification, basal respiration and ammonia-oxidizing bacteria in experimental grasslands? Soil Biol Biochem 42:1944–51.

    Article  CAS  Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–6.

    Article  PubMed  CAS  Google Scholar 

  • Miglietta F, Hoosbeek MR, Foot J, Gigon F, Hassinen A, Heijmans M, Peressotti A, Saarinen T, van Breemen N, Wallen B. 2001. Spatial and temporal performance of the MiniFACE (Free Air CO2 Enrichment) system on bog ecosystems in northern and central Europe. Environ Monit Assess 66:107–27.

    Article  PubMed  CAS  Google Scholar 

  • Milchunas DG, Morgan JA, Mosier AR, LeCain DR. 2005. Root dynamics and demography in shortgrass steppe under elevated CO2, and comments on minirhizotron methodology. Glob Change Biol 11:1837–55.

    Article  Google Scholar 

  • Morgan JA, Pataki DE, Korner C, Clark H, Del Grosso SJ, Grunzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert JB, Nowak RS, Parton WJ, Polley HW, Shaw MR. 2004. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140:11–25.

    Article  PubMed  CAS  Google Scholar 

  • Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y, Williams DG, Heisler-White J, Dijkstra FA, West M. 2011. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–5.

    Article  PubMed  CAS  Google Scholar 

  • Mosier AR, Parton WJ, Martin RE, Valentine DW, Ojima DS, Schimel DS, Burke IC, Adair EC, Del Grosso SJ. 2008. Soil-atmosphere exchange of trace gases in the Colorado shortgrass steppe. In: Lauenroth WK, Burke IC, Eds. Ecology of the shortgrass steppe: a long-term perspective. New York: Oxford University Press. p 342–72.

    Google Scholar 

  • Niklaus PA, Kandeler E, Leadley PW, Schmid B, Tscherko D, Korner C. 2001. A link between plant diversity, elevated CO2 and soil nitrate. Oecologia 127:540–8.

    Article  Google Scholar 

  • Niu SL, Sherry RA, Zhou XH, Wan SQ, Luo YQ. 2010. Nitrogen regulation of the climate-carbon feedback: evidence from a long-term global change experiment. Ecology 91:3261–73.

    Article  PubMed  Google Scholar 

  • NOAA. 1994. Local climatological data, Cheyenne, Wyoming. National Climate Data Center, Ashville, NC.

  • Parton WJ, Morgan JA, Wang GM, Del Grosso S. 2007. Projected ecosystem impact of the Prairie Heating and CO2 Enrichment experiment. New Phytol 174:823–34.

    Article  PubMed  CAS  Google Scholar 

  • Patil RH, Laegdsmand M, Olesen JE, Porter JR. 2010. Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agric Ecosyst Environ 139:195–205.

    Article  CAS  Google Scholar 

  • Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo YQ, Megonigal JP, Olsrud M, Ryan MG, Wan SQ. 2004. Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162:311–22.

    Article  Google Scholar 

  • Pepper DA, Del Grosso SJ, McMurtrie RE, Parton WJ. 2005. Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising [CO2], temperature and nitrogen input. Global Biogeochem Cycles 19:GB1004.

    Article  Google Scholar 

  • Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD. 1994. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol Appl 4:617–25.

    Article  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES. 2011. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–94.

    Article  PubMed  Google Scholar 

  • Rastetter EB, Perakis SS, Shaver GR, Agren GI. 2005. Terrestrial C sequestration at elevated-CO2 and temperature: the role of dissolved organic N loss. Ecol Appl 15:71–86.

    Article  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–5.

    Article  PubMed  CAS  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–62.

    Article  Google Scholar 

  • Rutting T, Clough TJ, Muller C, Lieffering M, Newton PCD. 2010. Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture. Glob Change Biol 16:2530–42.

    Google Scholar 

  • Sardans J, Penuelas J, Estiarte M, Prieto P. 2008. Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Glob Change Biol 14:2304–16.

    Article  Google Scholar 

  • Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602.

    Article  Google Scholar 

  • Schmidt IK, Tietema A, Williams D, Gundersen P, Beier C, Emmett BA, Estiarte M. 2004. Soil solution chemistry and element fluxes in three European heathlands and their responses to warming and drought. Ecosystems 7:638–49.

    Article  CAS  Google Scholar 

  • Wan SQ, Hui DF, Wallace L, Luo YQ. 2005. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles 19:GB2014.

    Article  Google Scholar 

  • Wang CH, Wan SQ, Xing XR, Zhang L, Han XG. 2006. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biol Biochem 38:1101–10.

    Article  CAS  Google Scholar 

  • Xu YQ, Wan SQ, Cheng WX, Li LH. 2008. Impacts of grazing intensity on denitrification and N2O production in a semi-arid grassland ecosystem. Biogeochemistry 88:103–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dan LeCain, David Smith, Erik Hardy, and Matthew Parsons for their technical assistance and Joanne Newcomb, Megan Steinweg, Hannah Munn, Courtney Ellis, Christine Rumsey, and Jennifer Bell, for assistance in the field and in the laboratory. This project was supported by a USDA-CSREES Soil Processes Program (Grant no. 2008-35107-18655), by the US Department of Energy’s Office of Science (BER) through the Terrestrial Ecosystem Science program and the Western Regional Center of the National Institute for Climatic Change Research at Northern Arizona University, by NSF (DEB# 1021559), and by the Australian Research Council (FT100100779).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolima Carrillo.

Additional information

Author Contributions

YC, FAD, EP, JAM, DMB designed the study and performed the research. YC analyzed the data and wrote the paper with contributions from FAD, EP, JAM, and DMB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, Y., Dijkstra, F.A., Pendall, E. et al. Controls over Soil Nitrogen Pools in a Semiarid Grassland Under Elevated CO2 and Warming. Ecosystems 15, 761–774 (2012). https://doi.org/10.1007/s10021-012-9544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9544-0

Keywords

Navigation