Skip to main content

Advertisement

Log in

Activation of multiple angiogenic signaling pathways in hemangiopericytoma

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Hemangiopericytoma (HPC) is a highly vascularized mesenchymal tumor. Local recurrence and distant metastasis are common features of HPC. Considering the remarkable hyper-vasculature phenotype of HPC, we assumed that dysregulated angiogenic signaling pathways were involved in HPC. The key components of angiogenic signaling pathways including VEGF–VEGF-R2, EphrinB2-EphB4 and DLL4-Notch were examined by real-time RT-PCR, Western blotting and immunostaining in 17 surgical specimens of HPC patients and in 6 controls. A significant upregulation of VEGF and VEGF-R2 associated with elevated levels of p-Akt and proliferating cell nuclear antigen (PCNA) was detected in HPC. Moreover, a dramatic increase in the mRNA and protein expression of EphB4 and its downstream factor p-Erk1/2 was found in HPC. A massive activation of core-components of DLL4-Notch signaling was detected in HPC. Double-immunofluorescent staining confirmed the expression of these upregulated key factors in the endothelial cells of tumor vessels. The present study identified the activation of multiple and crucial angiogenic signaling pathways, which could function individually and/or synergistically to stimulate angiogenesis in HPC and eventually contribute to tumor growth and progression. Our findings emphasize the importance to target multiple angiogenic signaling pathways when an anti-angiogenic therapy is considered for this highly vascularized tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bolos V, Grego-Bessa J, de la Pompa JL (2007) Notch signaling in development and cancer. Endocr Rev 28:339–363

    Article  CAS  PubMed  Google Scholar 

  2. Diehl S, Bruno R, Wilkinson GA, Loose DA, Wilting J, Schweigerer L, Klein R (2005) Altered expression patterns of EphrinB2 and EphB2 in human umbilical vessels and congenital venous malformations. Pediatr Res 57:537–544

    Article  CAS  PubMed  Google Scholar 

  3. Dopeso H, Mateo-Lozano S, Mazzolini R, Rodrigues P, Lagares-Tena L, Ceron J, Romero J, Esteves M, Landolfi S, Hernandez-Losa J, Castano J, Wilson AJ, Ramon y Cajal S, Mariadason JM, Schwartz S, Jr., Arango D (2009) The receptor tyrosine kinase EPHB4 has tumor suppressor activities in intestinal tumorigenesis. Cancer Research 69:7430–7438

  4. Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20:4368–4380

    Article  CAS  PubMed  Google Scholar 

  5. El Hindy N, Keyvani K, Pagenstecher A, Dammann P, Sandalcioglu IE, Sure U, Zhu Y (2013) Implications of Dll4-Notch signaling activation in primary glioblastoma multiforme. Neuro Oncol 15:1366–1378

    Article  PubMed  PubMed Central  Google Scholar 

  6. Flaherty KT, Manola JB, Pins M, McDermott DF, Atkins MB, Dutcher JJ, George DJ, Margolin KA, DiPaola RS (2015) BEST: a randomized phase II study of vascular endothelial growth factor, RAF kinase, and mammalian target of rapamycin combination targeted therapy with bevacizumab, sorafenib, and temsirolimus in advanced renal cell carcinoma—a trial of the ECOG-ACRIN cancer research group (E2804). J Clin Oncol 33:2384–2391

    Article  CAS  PubMed  Google Scholar 

  7. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  8. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    Article  CAS  PubMed  Google Scholar 

  9. Franceschi E, Brandes AA (2015) The role of bevacizumab in recurrent glioblastoma: new insights from randomized trials. CNS Oncol 4:117–119

    Article  CAS  PubMed  Google Scholar 

  10. Guthrie BL, Ebersold MJ, Scheithauer BW, Shaw EG (1989) Meningeal hemangiopericytoma: histopathological features, treatment, and long-term follow-up of 44 cases. Neurosurgery 25:514–522

    Article  CAS  PubMed  Google Scholar 

  11. Hammes LS, Tekmal RR, Naud P, Edelweiss MI, Kirma N, Valente PT, Syrjanen KJ, Cunha-Filho JS (2008) Up-regulation of VEGF, c-fms and COX-2 expression correlates with severity of cervical cancer precursor (CIN) lesions and invasive disease. Gynecol Oncol 110:445–451

    Article  CAS  PubMed  Google Scholar 

  12. Hassan-Mohamed I, Giorgio C, Incerti M, Russo S, Pala D, Pasquale EB, Zanotti I, Vicini P, Barocelli E, Rivara S, Mor M, Lodola A, Tognolini M (2014) UniPR129 is a competitive small molecule Eph-ephrin antagonist blocking in vitro angiogenesis at low micromolar concentrations. Br J Pharmacol 171:5195–5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12:551–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622

    Article  CAS  PubMed  Google Scholar 

  15. Jin MM, Ye YZ, Qian ZD, Zhang YB (2015) Notch signaling molecules as prognostic biomarkers for non-small cell lung cancer. Oncol Lett 10:3252–3260

    PubMed  PubMed Central  Google Scholar 

  16. Kargiotis O, Rao JS, Kyritsis AP (2006) Mechanisms of angiogenesis in gliomas. J Neurooncol 78:281–293

    Article  CAS  PubMed  Google Scholar 

  17. Khansaard W, Techasen A, Namwat N, Yongvanit P, Khuntikeo N, Puapairoj A, Loilome W (2014) Increased EphB2 expression predicts cholangiocarcinoma metastasis. Tumour Biol J Int Soc Oncodev Biol Med 35:10031–10041

    Article  CAS  Google Scholar 

  18. Koch U, Radtke F (2007) Notch and cancer: a double-edged sword. Cell Mol Life Sci 64:2746–2762

    Article  CAS  PubMed  Google Scholar 

  19. Kumar SR, Scehnet JS, Ley EJ, Singh J, Krasnoperov V, Liu R, Manchanda PK, Ladner RD, Hawes D, Weaver FA, Beart RW, Singh G, Nguyen C, Kahn M, Gill PS (2009) Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression. Cancer Res 69:3736–3745

    Article  CAS  PubMed  Google Scholar 

  20. Li JL, Sainson RC, Shi W, Leek R, Harrington LS, Preusser M, Biswas S, Turley H, Heikamp E, Hainfellner JA, Harris AL (2007) Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67:11244–11253

    Article  CAS  PubMed  Google Scholar 

  21. Liersch-Lohn B, Slavova N, Buhr HJ, Bennani-Baiti IM (2016) Differential protein expression and oncogenic gene network link tyrosine kinase ephrin B4 receptor to aggressive gastric and gastroesophageal junction cancers. Int J Cancer 138:1220–1231

    Article  PubMed  Google Scholar 

  22. Liu W, Ahmad SA, Jung YD, Reinmuth N, Fan F, Bucana CD, Ellis LM (2002) Coexpression of ephrin-Bs and their receptors in colon carcinoma. Cancer 94:934–939

    Article  CAS  PubMed  Google Scholar 

  23. Louis DNOH, Wiestler OD, Cavanee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of Tumours of the Central Nervous System. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maekawa H, Oike Y, Kanda S, Ito Y, Yamada Y, Kurihara H, Nagai R, Suda T (2003) Ephrin-B2 induces migration of endothelial cells through the phosphatidylinositol-3 kinase pathway and promotes angiogenesis in adult vasculature. Arterioscler Thromb Vasc Biol 23:2008–2014

    Article  CAS  PubMed  Google Scholar 

  25. Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444:1032–1037

    Article  CAS  PubMed  Google Scholar 

  26. Patel NS, Dobbie MS, Rochester M, Steers G, Poulsom R, Le Monnier K, Cranston DW, Li JL, Harris AL (2006) Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer. Clin Cancer Res 12:4836–4844

    Article  CAS  PubMed  Google Scholar 

  27. Piha-Paul SA, Munster PN, Hollebecque A, Argiles G, Dajani O, Cheng JD, Wang R, Swift A, Tosolini A, Gupta S (2015) Results of a phase 1 trial combining ridaforolimus and MK-0752 in patients with advanced solid tumours. Eur J Cancer 51:1865–1873

    Article  CAS  PubMed  Google Scholar 

  28. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65:8530–8537

    Article  CAS  PubMed  Google Scholar 

  29. Sahebjam S, Bedard PL, Castonguay V, Chen Z, Reedijk M, Liu G, Cohen B, Zhang WJ, Clarke B, Zhang T, Kamel-Reid S, Chen H, Ivy SP, Razak AR, Oza AM, Chen EX, Hirte HW, McGarrity A, Wang L, Siu LL, Hotte SJ (2013) A phase I study of the combination of ro4929097 and cediranib in patients with advanced solid tumours (PJC-004/NCI 8503). Br J Cancer 109:943–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salvucci O, Tosato G (2012) Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis. Adv Cancer Res 114:21–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T, Acker-Palmer A (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465:487–491

    Article  CAS  PubMed  Google Scholar 

  32. Schwartzberg LS, Rivera F, Karthaus M, Fasola G, Canon JL, Hecht JR, Yu H, Oliner KS, Go WY (2014) PEAK: a randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J Clin Oncol 32:2240–2247

    Article  CAS  PubMed  Google Scholar 

  33. Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA, Kintner CR, Stark KL (2000) Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14:1313–1318

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Vallon M, Chang J, Zhang H, Kuo CJ (2014) Developmental and pathological angiogenesis in the central nervous system. Cell Mol Life Sci 71:3489–3506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vuorinen V, Sallinen P, Haapasalo H, Visakorpi T, Kallio M, Jaaskelainen J (1996) Outcome of 31 intracranial haemangiopericytomas: poor predictive value of cell proliferation indices. Acta Neurochir (Wien) 138:1399–1408

    Article  CAS  Google Scholar 

  36. Wick W, Platten M, Wick A, Hertenstein A, Radbruch A, Bendszus M, Winkler F (2015) Current status and future directions of anti-angiogenic therapy for gliomas. Neuro Oncol. doi:10.1093/neuonc/nov180

    Google Scholar 

  37. Xu X, Zhao Y, Xu M, Dai Q, Meng W, Yang J, Qin R (2011) Activation of Notch signal pathway is associated with a poorer prognosis in acute myeloid leukemia. Med Oncol 28(Suppl 1):S483–S489

    Article  PubMed  Google Scholar 

  38. Yuan X, Zhang M, Wu H, Xu H, Han N, Chu Q, Yu S, Chen Y, Wu K (2015) Expression of Notch1 Correlates with Breast Cancer Progression and Prognosis. PLoS One 10:e0131689

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang J, Hughes S (2006) Role of the ephrin and Eph receptor tyrosine kinase families in angiogenesis and development of the cardiovascular system. J Pathol 208:453–461

    Article  CAS  PubMed  Google Scholar 

  40. Zhang M, Ye G, Li J, Wang Y (2015) Recent advance in molecular angiogenesis in glioblastoma: the challenge and hope for anti-angiogenic therapy. Brain Tumor Pathol 32:229–236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Rita Haase and Ms. Eva Kusch for technical assistance. The study is financially supported by an IFORES-program from the Medical Faculty, University of Duisburg-Essen to YZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

D. Pierscianek and A. Michel contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierscianek, D., Michel, A., Hindy, N.E. et al. Activation of multiple angiogenic signaling pathways in hemangiopericytoma. Brain Tumor Pathol 33, 200–208 (2016). https://doi.org/10.1007/s10014-016-0256-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-016-0256-6

Keywords

Navigation