Skip to main content
Log in

Electrochemical co-reduction of Mg(II), Al(III) and Nd(III) in the LiCl-NaCl-MgCl2-AlF3 melts

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

To prepare Mg–Al-Nd alloys electrochemically, the electrochemical co-reduction mechanism of Mg(II), Al(III), and Nd(III) was probed in the LiCl-NaCl-MgCl2-AlF3 melts on a molybdenum electrode by means of various electrochemical measurement techniques, i.e., cyclic voltammetry, square wave voltammetry, chronopotentiometry, and open circuit chronopotentiometry. It was found that Nd could deposit on pre-deposited Al metal and form Nd-Al intermetallics in the LiCl-NaCl-NdCl3-MgCl2-AlF3 system, and the electrochemical signal related to the formation of ternary intermetallics was not detected. The co-reduction of Mg(II), Al(III), and Nd(III) was carried out on molybdenum electrode by galvanostatic electrolysis to prepare Mg–Al-Nd alloy, and samples were characterized by X-ray diffraction, scanning electron microscopy (SEM) with energy-dispersive spectrometry (EDS), and inductively coupled plasma-atomic emission spectrometry (ICP-AES). The results indicate that the alloy products were comprised of Al2Nd intermetallic, Mg and Al phases, and the Mg–Al compound was not observed in the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mordike BL, Ebert T (2001) Magnesium-properties-application-potential. Mater Sci EngA 302:37–45

    Article  Google Scholar 

  2. Gray J, Luan B (2002) Protective coatings on magnesium and its alloys-a critical review. J Alloy Compd 336:88–133

    Article  CAS  Google Scholar 

  3. Kleiner S, Beffort O, Wahlen A, Uggowitzer PJ (2002) Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg-Al alloys. J Light Met 2:277–280

    Article  Google Scholar 

  4. Kurnaz SC, Sevik H, Açıkgöz S, Özel A (2011) Influence of titanium and chromium addition on the microstructure and mechanical properties of squeeze cast Mg-6Al alloy. J Alloy Compd 509:3190–3196

    Article  CAS  Google Scholar 

  5. Lee YC, Dahle AK, StJohn DH, Hutt JEC (1999) The effect of grain refinement and silicon content on grain formation in hypoeutectic Al-Si alloys. Mater Sci Eng A 259:43–52

    Article  Google Scholar 

  6. Shaw C, Jones H (1999) Structure and mechanical properties of two Mg-Al-Ca alloys consolidated from atomized power. Mater Sci Tech 15:78–83

    Article  CAS  Google Scholar 

  7. Li SS, Tang B, Zeng DB (2007) Effects and mechanism of Ca on refinement of AZ91D alloy. J Alloys Compd 437:317–321

    Article  CAS  Google Scholar 

  8. Prasad YVRK, Rao KP, Hort N, Kainer KU (2009) Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg-3Sn-1Ca alloy. Mater Sci Eng A 502:25–31

    Article  Google Scholar 

  9. Gao L, Chen RS, Han EH (2009) Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys.J Alloys Compd 481:397–394

  10. Rokhlin LL, Nikitina NI (1998) Recovery after ageing of Mg-Y and Mg-Gd alloys. J Alloys Compd 279:166–170

    Article  CAS  Google Scholar 

  11. Wang J, Meng J, Zhang DP, Tang DX (2007) Effect of Y for enhanced agehardening response and mechanical properties of Mg-Gd-Y-Zr alloys. Mater Sci Eng A 456:78–84

    Article  Google Scholar 

  12. Liu XB, Chen RS, Han EH (2008) Effects of ageing treatment on microstructures and properties of Mg-Gd-Y-Zr alloys with and without Zn additions. J Alloys Compd 465:232–238

    Article  CAS  Google Scholar 

  13. Yuan W, Liang Z, Zhang C (2012) Effects of La addition on the mechanical propertiesand thermal-resistant properties of Mg-Al-Si-Zr alloys based on AA 6201. Mater Des 34:788–792

    Article  CAS  Google Scholar 

  14. Zhou WW, Cai B, Li W (2012) Heat-resistant Al-0.2Sc-0.04Zr electrical conductor. Mater Sci Eng A 552:353–358

    Article  CAS  Google Scholar 

  15. Han W, Li M, Zhang ML, Yan YD (2016) Progress in preparation of rare earth metals andalloys by electrodeposition in molten salts. Rare Met 35:811–825

    Article  Google Scholar 

  16. Tang H, Yan YD, Zhang ML, Li X, Han W, Xue Y, Zhang ZJ, He H (2013) Fabrication of Mg-Pr and Mg-Li-Pr alloys by electrochemical co-reduction from their molten chloride. Electrochim Acta 107:209–215

    Article  CAS  Google Scholar 

  17. Wang YC, Li M, Han W, Zhang ML, Yang YS, Sun Y, Zhao YC, Yan YD (2015) Electrochemical extraction and separation of praseodymium and erbium on reactive magnesium electrode in molten salts. J Solid State Electrochem 19(12):3629–3638

    Article  CAS  Google Scholar 

  18. Fu YZ, Zhang ZM, Lu XC, Pan BF, Zhang LP (2022) Preparation of Mg-Nd alloys by magnesiothermic reduction in molten salt. Metall Mater Trans B 53(1):617–626

    Article  CAS  Google Scholar 

  19. Yang YS, Zhang ML, Han W, Sun PY, Liu B, Jiang HL, Jiang T, Peng SM, Li M, Ye K, Yan YD (2014) Selective electrodeposition of dysprosium in LiCl-KCl-GdCl3-DyCl3 melts at magnesium electrodes: application to separation of nuclear wastes. Electrochim Acta 118:150–156

    Article  CAS  Google Scholar 

  20. Yang YS, Zhang ML, Han W, Jiang HL, Li M, Ye K, Yan YD (2014) Selective extraction of gadolinium from Sm2O3 and Gd2O3 mixtures in a single step assisted by MgCl2 in LiCl-KCl melts. J Solid State Electrochem 18(3):843–850

    Article  Google Scholar 

  21. Zhang ML, Yang YS, Han W, Li M, Sun Y, Yan YD (2013) Separation of SmCl3 from SmCl3-DyCl3 system by electrolysis in KCl-LiCl-MgCl2 molten salts. Energy Procedia 39:375–381

    Article  CAS  Google Scholar 

  22. Wang J, Li M, Han W, Liu ZY, Yang XG, Sun Y, Zhang ML (2022) Electrochemical co-reduction of holmium and magnesium ions in eutectic LiCl-KCl salts. Rare Met 41(4):1394–1402

    Article  Google Scholar 

  23. Chen Y, Ye K, Zhang ML (2010) Preparation of Mg-Yb alloy film by electrolysis in the molten LiCl-KCl-YbCl3 system at low temperature. J Rare Earth 28(1):128–133

    Article  CAS  Google Scholar 

  24. Jiang T, Wang N, Peng SM, Li M, Han W, Zhang ML (2015) Electrochemical formation of Mg-Lu alloy and alloy layer in molten LiCl-KCl. J Alloy Compd 658:198–209

    Article  Google Scholar 

  25. Han W, Tian Y, Zhang ML, Ye K, Zhao QY, Wei SQ (2009) Preparation of Mg-Li-Sm alloys by electrocodeposition in molten salt. J Rare Earth 27:1046–1050

    Article  Google Scholar 

  26. Zhang ML, Cao P, Han W, Yan YD, Chen LJ (2012) Preparation of Mg-Li-La alloys by electrolysis in molten salt. Trans Nonferrous Met Soc China 22:16–22

    Article  CAS  Google Scholar 

  27. Zhang M, Han W, Zhang ML, Zhu FY, Xue Y, Zhang ZJ (2013) Electrochemical formation process and phase control of Mg-Li-Ce alloys in molten chlorides. J Rare Earth 31:609–615

    Article  CAS  Google Scholar 

  28. Liu YL, Yuan LY, Ye GA, Liu K, Zhu L, Zhang ML, Chai ZF, Shi WQ (2014) Co-reduction behaviors of lanthanum and aluminium ions in LiCl-KCl eutectic. Electrochim Acta 147:104–113

    Article  CAS  Google Scholar 

  29. Wang L, Liu YL, Liu K, Tan SL, Yan LY, Su LL, Chai ZF, Shi WQ (2014) Electrochemical extraction of cerium from CeO2 assisted by AlCl3 in molten LiCl-KCl. Electrochim Acta 147:385–391

    Article  CAS  Google Scholar 

  30. Castrillejo Y, Fernández P, Medina J, Hernández P, Barrado E (2011) Electrochemical extraction of samarium from molten chlorides in pyrochemical processes. Electrochim Acta 56:8638–8644

    Article  CAS  Google Scholar 

  31. Bermejo MR, Rosa F, Barrado E, Castrillejo Y (2007) Cathodic behaviour of europium (III) on glassy carbon, electrochemical formation of Al4Eu, and oxo acidity reactions in the eutectic LiCl-KCl. J Electroanal Chem 603(1):81–95

    Article  CAS  Google Scholar 

  32. Bae SE, Park YJ, Min SK, Cho YH, Song K (2010) Aluminum assisted electrodeposition of europium in LiCl-KCl molten salt. Electrochim Acta 55(8):3022–3025

    Article  CAS  Google Scholar 

  33. Li M, Gu QQ, Han W, Yan YD, Zhang ML, Sun Y, Shi WG (2015) Electrodeposition of Tb on Mo and Al electrodes: thermodynamic properties of TbCl3 and TbAl2 in the LiCl-KCl eutectic melts. Electrochim Acta 167:139–146

    Article  CAS  Google Scholar 

  34. Su LL, Liu K, Liu YL, Wang L, Yuan LY, Wang L, Li ZJ, Zhao XL, Chai ZF, Shi WQ (2014) Electrochemical behaviors of Dy(III) and its co-reduction with Al(III) in molten LiC-KCl salts. Electrochim Acta 147:87–95

    Article  CAS  Google Scholar 

  35. Sun Y, Zhang ML, Han W, Yan YD, Yang YS, Sun YX (2013) Electrochemical behaviour and codeposition of Al-Li-Er alloys in LiCl-KCl-AlCl3-Er2O3 melts. J Rare Earths 31(2):192–197

    Article  CAS  Google Scholar 

  36. Smolenski V, Novoselova A (2012) Electrochemistry of redox potential of the couple Tm3+Tm2+ and the formation of a Tm-Al alloy in fused NaCl-2CsCl eutectic. Electrochim Acta 63:179–184

    Article  CAS  Google Scholar 

  37. Bermejo MR, Barrado E, Martínez AM, Castrillejo Y (2008) Electrodeposition of Lu on W and Al electrodes: electrochemical formation of Lu-Al alloys and oxoacidity reactions of Lu(III) in the eutectic LiCl-KCl. J Electroanal Chem 617:85–100

    Article  CAS  Google Scholar 

  38. Yan YD, Yang XN, Huang Y, Xue Y, Zhang ML, Han W (2016) Direct electrochemical formation of different phases Al-Y alloys by codeposition in LiCl-KCl melts. Rare Metal Mat Eng 45:272–276

    Article  CAS  Google Scholar 

  39. Li M, Liu YC, Han W, Wang SS, Zhang ML, Yan YD (2015) The electrochemical co-reduction of Mg-Al-Y alloys in the LiCl-NaCl-MgCl2-AlF3-YCl3 melts. Metall Mater Trans B 46:644–652

    Article  CAS  Google Scholar 

  40. Jang PN, Li HM, Kim WJ, Yun SC, Hwang GH (2019) Electrolytic preparation of Mg-Al-La alloys in KCl-MgCl2-AlF3 molten salts. J Mater Res Technol 8:5456–5463

    Article  CAS  Google Scholar 

  41. Zhang JH, Wang J, Qiu X, Zhang DP, Tian Z, Niu XD, Tang DX, Meng J (2008) Effect of Nd on the microstructure, mechanical properties and corrosion behavior of die-cast Mg-4Al-based alloy. J Alloys Compd 464:556–564

    Article  CAS  Google Scholar 

  42. Wang XQ, Li QN, Zhang XY (2008) Effects of yttrium and neodymium on microstructure and mechanical properties of AZ81 magnesium alloy. Rare Metal Mat Eng 37(1):62–65

    Google Scholar 

  43. Castrillejo Y, Bermejo MR, Barrado E, Martı´nez AM, Arocas PD, (2003) Solubilization of rare earth oxides in the eutectic LiCl-KCl mixture at 450 °C and in the equimolar CaCl2/NaCl melt at 550 °C. J Electroanal Chem 545:141–157

    Article  CAS  Google Scholar 

  44. Fukasawa K, Uehara A, Nagai T, Fujii T, Yamana H (2011) Electrochemical and spectrophotometric study on neodymium ions in molten alkali chloride mixtures. J Alloys Compd 509:5112–5118

    Article  CAS  Google Scholar 

  45. Yamana H, Park BG, Shirai O, Fujii T, Uehara A, Moriyama H (2006) Electrochemically produced divalent neodymium in chloride melt. J Alloys Compd 408:66–70

    Article  Google Scholar 

  46. Novoselova A, Smolenski V (2013) Electrochemical behavior of neodymium compounds in molten chlorides. Electrochim Acta 87:657–662

    Article  CAS  Google Scholar 

  47. Tang H, Pesic B (2015) Electrochemistry and the mechanisms of nucleation and growth of neodymium during electroreduction from LiCl-KCl eutectic salts on Mo substrate. J Nucl Mater 458:37–44

    Article  CAS  Google Scholar 

  48. Shen D, Akolkar R (2017) Electrodeposition of neodymium from NdCl3-containing eutectic LiCl–KCl melts investigated using voltammetry and diffusion-reaction modeling. J Electrochem Soc 164(8):H5292–H5298

    Article  CAS  Google Scholar 

  49. Liu K, Liu YL, Chai ZF, Shi WQ (2017) Evaluation of the electroextractions of Ce and Nd from LiCl-KCl molten salt using liquid Ga electrode. J Electrochem Soc 164(4):D169–D178

    Article  CAS  Google Scholar 

  50. Sim JH, Kim YS, Paek SW, Kim SH, Lee SJ (2018) Electrode reactions of Nd3+/Nd COUPLE in LiCl-KCl-NdCl3 solutions at solid W and liquid Cd electrodes. Int J Electrochem Sci 13:2842–2859

    Article  CAS  Google Scholar 

  51. Smolenski V, Novoselova A, Osipenko A, Caravaca C, Córdoba GD (2008) Electrochemistry of ytterbium (III) in molten alkali metal chlorides. Electrochim Acta 54:382–387

    Article  CAS  Google Scholar 

  52. Masset P, Konings RJM, Malmbeck R, Serp J, Glatz JP (2005) Thermochemical properties of lanthanides (Ln = La, Nd) and actinides (An = U, Np, Pu, Am) in the molten LiCl-KCl eutectic. J Nucl Mater 344(1–3):173–197

    Article  CAS  Google Scholar 

  53. Kim S, L SH, (2020) Electrochemical properties of NdCl3 and CeCl3 in molten LiCl-KCl eutectic salt. Appl Sci 10:7252–7262

    Article  CAS  Google Scholar 

  54. Konishi H, Nishikiori T, Nohira T, Ito Y (2003) Thermodynamic properties of Dy/Ni intermetallic compounds. Electrochim Acta 48(10):1403–1408

    Article  CAS  Google Scholar 

  55. Zhang ML, Yang YS, Han W, Li M, Ye K, Sun Y (2013) Electrodeposition of magnesium-lithium-dysprosium ternary alloys with controlled componen ts from dysprosium oxide assisted by magnesium chloride in molten chlorides. J Solid State Electrochem 17:2671–2678

    Article  CAS  Google Scholar 

  56. Feng L, Guo C, Tang DX (1996) Relationship between the dissolution behaviours and current efficiencies of La, Ce, Pr and Nd in their chloride molten salts. J Alloys Compd 234(2):183–186

    Article  CAS  Google Scholar 

  57. Akolkar R (2022) Perspective—is sustainable electrowinning of neodymium metal achievable? J Electrochem Soc 169:043501

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the National Natural Science Foundation of China (U2167215, 22076035, 11875116, and 21876034) and the Fundamental Research Funds for the Central Universities (3072022JC1501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Sun or Wei Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Guo, X., Liu, Y. et al. Electrochemical co-reduction of Mg(II), Al(III) and Nd(III) in the LiCl-NaCl-MgCl2-AlF3 melts. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05868-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05868-9

Keywords

Navigation