Skip to main content
Log in

Electrochemical behavior of palladium nanoparticles deposition on glassy carbon electrode from reline and ethaline and its application in DNA sensors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, we investigate the electrochemical behavior of palladium nanoparticles (PdNP) deposition on glassy carbon electrode (GCE) in two deep eutectic solvents, namely, reline and ethaline, and its application in DNA sensors. The electrochemical behaviors of PdNP deposition are investigated by cyclic voltammetry and chronoamperometry. The obtained results indicate that the PdNP deposition on GCE in reline was dominated by the progressive 3D nucleation mechanism, while that in ethaline was dominated by the instantaneous nucleation mechanism. The structural, morphological, and compositional characteristics are also investigated through X-ray diffraction, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. A PdNP-based DNA sensor is constructed for Mycobacterium tuberculosis detection. Results indicate a significant difference between the DNA sensing responses based on the PdNPs synthesized in reline (PdNP-RE) and ethaline (PdNP-ET). The PdNP-ET–based DNA sensor has higher sensitivity than the PdNP-RE–based DNA sensor. This study serves as a reference for the development of improved nanomaterials for bioanalysis and the elaborate design of biosensors for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abbott AP et al (2003) Novel solvent properties of choline chloride/urea mixtures Electronic supplementary information (ESI) available: spectroscopic data. Chem Commun 1:70–71

    Article  Google Scholar 

  2. Abbott AP et al (2001) Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Commun 19:2010–2011

    Article  Google Scholar 

  3. Hammons JA et al (2016) Supported silver nanoparticle and near-interface solution dynamics in a deep eutectic solvent. J Phys Chem C 120(3):1534–1545

    Article  CAS  Google Scholar 

  4. Rayée Q et al (2017) Underpotential deposition of silver on gold from deep eutectic electrolytes. Electrochim Acta 237:127–132

    Article  Google Scholar 

  5. Li A et al (2017) Shape-controlled electrochemical synthesis of Au nanocrystals in reline: control conditions and electrocatalytic oxidation of ethylene glycol. RSC Adv 7(32):19694–19700

    Article  ADS  CAS  Google Scholar 

  6. Xie X et al (2016) Voltammetric study and electrodeposition of Cu from CuO in deep eutectic solvents. J Electrochem Soc 163(9):D537–D543

    Article  CAS  Google Scholar 

  7. Sebastián P et al (2017) Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent: new insights. Electrochem Commun 78:51–55

    Article  Google Scholar 

  8. Vieira L et al (2017) Tin, bismuth, and tin–bismuth alloy electrodeposition from chlorometalate salts in deep eutectic solvents. ChemistryOpen 6(3):393–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salomé S et al (2013) Tin electrodeposition from choline chloride based solvent: influence of the hydrogen bond donors. J Electroanal Chem 703:80–87

    Article  Google Scholar 

  10. Song Y et al (2017) Interfacial assistant role of amine additives on zinc electrodeposition from deep eutectic solvents: an in situ X-ray imaging investigation. Electrochim Acta 240:90–97

    Article  CAS  Google Scholar 

  11. Li R et al (2015) Enhanced corrosion performance of Zn coating by incorporating graphene oxide electrodeposited from deep eutectic solvent. RSC Adv 5(75):60698–60707

    Article  ADS  CAS  Google Scholar 

  12. Lanzinger G et al (2013) Electrodeposition of palladium films from ionic liquid (IL) and deep eutectic solutions (DES): physical–chemical characterisation of non-aqueous electrolytes and surface morphology of palladium deposits. Trans IMF 91(3):133–140

    Article  CAS  Google Scholar 

  13. Renjith A et al (2014) In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents. J Colloid Interface Sci 426:270–279

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Hammons JA et al (2013) Stability, assembly, and particle/solvent interactions of Pd nanoparticles electrodeposited from a deep eutectic solvent. J Phys Chem C 117(27):14381–14389

    Article  CAS  Google Scholar 

  15. Landa-Castro M et al (2022) Electrochemical nucleation and growth of Pd-Co alloy nanoparticles from the reline deep eutectic solvent. J Electrochem Soc 169:092521

    Article  CAS  Google Scholar 

  16. Espino-López IE et al (2019) Palladium nanoparticles electrodeposition onto glassy carbon from a deep eutectic solvent at 298 K and their catalytic performance toward formic acid oxidation. J Electrochem Soc 166(1):D3205–D3211

    Article  Google Scholar 

  17. Lu L-M et al (2011) In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26(8):3500–3504

    Article  CAS  PubMed  Google Scholar 

  18. Wang H et al (2013) A silver–palladium alloy nanoparticle-based electrochemical biosensor for simultaneous detection of ractopamine, clenbuterol and salbutamol. Biosens Bioelectron 49:14–19

    Article  ADS  PubMed  Google Scholar 

  19. Zhang C et al (2019) Rolling circle amplification-mediated in situ synthesis of palladium nanoparticles for the ultrasensitive electrochemical detection of microRNA. Analyst 144(12):3817–3825

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Baccar H et al (2011) Functionalized palladium nanoparticles for hydrogen peroxide biosensor. Int J Electrochem 2011:1–4

    Google Scholar 

  21. Meng T et al (2020) Pd nanoparticles-DNA layered nanoreticulation biosensor based on targetcatalytic hairpin assembly for ultrasensitive and selective biosensing of microRNA-21. Sens Actuators B Chem 323:128621

    Article  CAS  Google Scholar 

  22. Savéant J-M, Costentin C (2019) Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry, 2nd Edition. JohnWiley & sons Inc. ISBN: 978-1-119-29235-7. https://doi.org/10.1002/9781119292364

  23. Elgrishi N et al (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95(2):197–206

    Article  CAS  Google Scholar 

  24. Berzins T et al (1953) Oscillographic polarographic waves for the reversible deposition of metals on solid electrodes. J Am Chem Soc 75(3):555–559

    Article  CAS  Google Scholar 

  25. Mejía-Caballero I et al (2018) Mechanism and kinetics of chromium electrochemical nucleation and growth from a choline chloride/ethylene glycol deep eutectic solvent. J Electrochem Soc 165(9):D393–D401

    Article  Google Scholar 

  26. Phuong TDV et al (2021) Electrochemical behavior and electronucleation of copper nanoparticles from CuCl2·2H2O using a choline chloride-urea eutectic mixture. J Nanomater 2021:1–14

    Google Scholar 

  27. Hwang BJ et al (2001) Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite. Electrochim Acta 46(18):2843–2853

    Article  CAS  Google Scholar 

  28. Choi Y et al (2019) Nucleation and growth kinetics of electrochemically deposited ceria nanostructures for high-temperature electrocatalysis. Electrochim Acta 316:273–282

    Article  CAS  Google Scholar 

  29. Scharifker B et al (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889

    Article  CAS  Google Scholar 

  30. Sanchez JV et al (2001) Electrogeneration and characterization of poly(3-methylthiophene). Polym J 33(7):514–521

    Article  CAS  Google Scholar 

  31. Soma F et al (2020) Palladium electrochemistry in the choline chloride-urea deep eutectic solvent at gold and glassy carbon electrodes. Electrochim Acta 345:136165

    Article  CAS  Google Scholar 

  32. Scharifker BR et al (2003) Electrochemical nucleation and growth, in Encyclopedia of electrochemistry. Wiley. https://doi.org/10.1002/9783527610426.bard020503

    Article  Google Scholar 

  33. Dyamant I et al (2013) Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass. J Non Cryst Solids 378:115–120

    Article  ADS  CAS  Google Scholar 

  34. Palomar-Pardavé M et al (2017) Influence of temperature on the thermodynamics and kinetics of cobalt electrochemical nucleation and growth. Electrochim Acta 241:162–169

    Article  Google Scholar 

  35. Dao T, Phuong Vu et al (2021) Effect of temperature on the mechanisms and kinetics of cobalt electronucleation and growth onto glassy carbon electrode using reline deep eutectic solvent. J Electroanal Chem 880:114823

    Article  Google Scholar 

  36. Miller MA et al (2017) Iron electrodeposition in a deep eutectic solvent for flow batteries. J Electrochem Soc 164(4):A796–A803

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Vietnam National Foundation for Science and Technology Development (Grant No. 103.02-2019.337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuong Dinh Tam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 515 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phuong, T.D.V., Trang, N.T.K. & Tam, P.D. Electrochemical behavior of palladium nanoparticles deposition on glassy carbon electrode from reline and ethaline and its application in DNA sensors. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05844-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05844-3

Keywords

Navigation