Skip to main content
Log in

Dual-functional urea induced interface reaction enables the improved cycling stability of cation-disordered Li1.2Ti0.4Mn0.4O2 cathode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cation-disordered rocksalt (DRX) oxides show promise as lithium-ion battery cathodes due to their high theoretical capacity derived from anionic redox. However, the challenges of poor anionic redox reversibility, causing oxygen loss and voltage hysteresis, lead to rapid capacity decay. This study employs a dual-functional urea treatment on Li1.2Ti0.4Mn0.4O2 DRX cathodes, generating oxygen vacancies in the subsurface and a protective carbon nitride layer on the surface through interface reactions. Characterization via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy confirms these alterations. The presence of oxygen vacancies reduces the average Mn valence, increasing the capacity contributed by Mn and enhancing the reversibility of anionic oxygen redox, thus curbing oxygen loss. Additionally, the carbon nitride layer curtails the parasitic reaction between active oxygen species and the electrolyte. Urea-treated Li1.2Ti0.4Mn0.4O2 exhibits enhanced electrochemical performance, retaining a higher capacity (151 mAh⋅g−1, 80.3% of capacity retention) after 50 cycles compared to neat Li1.2Ti0.4Mn0.4O2 (117 mAh⋅g−1, 64.6% retention). Furthermore, the treatment improves lithium-ion diffusion and rate capability. This dual-functional urea approach presents a promising strategy for enhancing DRX cathode materials and advancing high-performance lithium-ion batteries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang H, Gao X, Cai Q, Zhang X, Tian Y, Jia M, Xie W, Du Y, Yan X (2023) Recent progress and perspectives on cation disordered rock-salt material for advanced li-ion batteries. J Mater Chem A. https://doi.org/10.1039/D3TA00852E

    Article  Google Scholar 

  2. Lee J, Urban A, Li X, Su D, Hautier G, Ceder G (2014) Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343:519–522. https://doi.org/10.1126/science.1246432

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Xu J, Patil S, Koirala KP, Chen W, Campos-Mata A, Wang C, Roy S, Nanda J, Ajayan PM (2023) Enhancing the electrode gravimetric capacity of Li1.2Mn0.4Ti0.4O2 cathode using interfacial carbon deposition and carbon nanotube-mediated electrical percolation. ACS Appl Mater Interfaces 15:31711–31719. https://doi.org/10.1021/acsami.3c04805

    Article  CAS  PubMed  Google Scholar 

  4. Qian J, Ha Y, Koirala KP, Huang D, Huang Z, Battaglia VS, Wang C, Yang W, Tong W (2023) Toward stable cycling of a cost-effective cation-disordered rocksalt cathode via fluorination. Adv Funct Mater 33:2205972. https://doi.org/10.1002/adfm.202205972

    Article  CAS  Google Scholar 

  5. Clement RJ, Lun Z, Ceder G (2020) Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energy Environ Sci 13:345–373. https://doi.org/10.1039/c9ee02803j

    Article  CAS  Google Scholar 

  6. Lun Z, Ouyang B, Cai Z, Clement R, Kwon D-H, Huang J, Papp JK, Balasubramanian M, Tian Y, McCloskey BD, Ji H, Kim H, Kitchaev DA, Ceder G (2020) Design principles for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6:153–168. https://doi.org/10.1016/j.chempr.2019.10.001

    Article  CAS  Google Scholar 

  7. Zhuo Z, Dai K, Qiao R, Wang R, Wu J, Liu Y, Peng J, Chen L, Chuang Y, Pan F, Shen Z, Liu G, Li H, Devereaux T, Yang W (2021) Cycling mechanism of Li2MnO3: Li-CO2 batteries and commonality on oxygen redox in cathode materials. Joule 5:975–997. https://doi.org/10.1016/j.joule.2021.02.004

    Article  CAS  Google Scholar 

  8. Yabuuchi N, Takeuchi M, Komaba S, Ichikawa S, Ozaki T, Inamasu T (2016) Synthesis and electrochemical properties of Li1.3Nb0.3V0.4O2 as a positive electrode material for rechargeable lithium batteries. Chem Commun 52:2051–2054. https://doi.org/10.1039/c5cc08034g

    Article  CAS  Google Scholar 

  9. Lee J, Seo D-H, Balasubramanian M, Twu N, Li X, Ceder G (2015) A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li-Ni-Ti-Mo oxides. Energy Environ Sci 8:3255–3265. https://doi.org/10.1039/C5EE02329G

    Article  CAS  Google Scholar 

  10. Cambaz MA, Vinayan BP, Euchner H, Pervez SA, Gesswein H, Braun T, Gross A, Fichtner M (2019) Design and tuning of the electrochemical properties of vanadium based cation-disordered rock-salt oxide positive electrode material for lithium-ion batteries. ACS Appl Mater Interfaces 11:39848–39858. https://doi.org/10.1021/acsami.9b12566

    Article  CAS  PubMed  Google Scholar 

  11. Chen R, Ren S, Knapp M, Wang D, Witter R, Fichtner M, Hahn H (2015) Disordered lithium-rich oxyfluoride as a stable host for enhanced Li+ intercalation storage. Adv Energy Mater 5:1401814. https://doi.org/10.1002/aenm.201401814

    Article  CAS  Google Scholar 

  12. Lee J, Papp JK, Clément RJ, Sallis S, Kwon D-H, Shi T, Yang W, McCloskey BD, Ceder G (2017) Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials. Nat Commun 8:981. https://doi.org/10.1038/s41467-017-01115-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou K, Zheng S, Ren F, Wu J, Liu H, Luo M, Liu X, Xiang Y, Zhang C, Yang W, He L, Yang Y (2020) Fluorination effect for stabilizing cationic and anionic redox activities in cation-disordered cathode materials. Energy Stor Mater 32:234–243. https://doi.org/10.1016/j.ensm.2020.07.012

    Article  Google Scholar 

  14. Ouyang B, Artrith N, Lun Z, Jadidi Z, Kitchaev DA, Ji H, Urban A, Ceder G (2020) Effect of fluorination on lithium transport and short-range order in disordered-rocksalt-type lithium-ion battery cathodes. Adv Energy Mater 10:1903240. https://doi.org/10.1002/aenm.201903240

    Article  CAS  Google Scholar 

  15. Zhou K, Zheng S, Liu H, Zhang C, Gao H, Luo M, Xu N, Xiang Y, Liu X, Zhong G, Yang Y (2019) Elucidating and mitigating the degradation of cationic-anionic redox processes in Li1.2Mn0.4Ti0.4O2 cation-disordered cathode materials. ACS Appl Mater Interfaces 11:45674–45682. https://doi.org/10.1021/acsami.9b16011

    Article  CAS  PubMed  Google Scholar 

  16. Huang B, Wang R, Gong Y, He B, Wang H (2019) Enhanced cycling stability of cation disordered rock-salt Li1.2Ti0.4Mn0.4O2 material by surface modification with Al2O3. Front Chem 7:1–7. https://doi.org/10.3389/fchem.2019.00107

    Article  CAS  Google Scholar 

  17. Ding X, Luo D, Cui J, Xie H, Ren Q, Lin Z (2020) An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew Chem Int Ed 59:7778–7782. https://doi.org/10.1002/anie.202000628

    Article  CAS  Google Scholar 

  18. Ma Q, Chen Z, Zhong S, Meng J, Lai F, Li Z, Cheng C, Zhang L, Liu T (2021) Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode. Nano Energy 81:105622. https://doi.org/10.1016/j.nanoen.2020.105622

    Article  CAS  Google Scholar 

  19. Zhang R, Wang Y, Fan J, Zheng M, Dong Q (2023) The strategy of surface oxygen vacancy stabilization for high-performance lithium-rich cathode materials. J Electrochem Soc 170:030517. https://doi.org/10.1149/1945-7111/acbf7d

    Article  CAS  Google Scholar 

  20. Qiu B, Zhang M, Wu L, Wang J, Xia Y, Qian D, Liu H, Hy S, Chen Y, An K, Zhu Y, Liu Z, Meng YS (2016) Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat Commun 7:12108. https://doi.org/10.1038/ncomms12108

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pei Y, Chen Q, Wang M, Li B, Wang P, Henkelman G, Zhen L, Cao G, Xu C-Y (2020) Reviving reversible anion redox in 3d-transition-metal Li rich oxides by introducing surface defects. Nano Energy 71:104644. https://doi.org/10.1016/j.nanoen.2020.104644

    Article  CAS  Google Scholar 

  22. Zhou K, Zhang C, Li Y, Liu X, Liu J, Lun Z, Yang Y (2023) A critical evaluation of interfacial stability in Li-excess cation-disordered rock-salt oxide cathode. Chem Eng J 464:142709. https://doi.org/10.1016/j.cej.2023.142709

    Article  CAS  Google Scholar 

  23. Sun Z, Wang H, Wu Z, Wang L (2018) G-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catal Today 300:160–172. https://doi.org/10.1016/j.cattod.2017.05.033

    Article  CAS  Google Scholar 

  24. Lin T, Schulli TU, Hu Y, Zhu X, Gu Q, Luo B, Cowie B, Wang L (2020) Faster activation and slower capacity/voltage fading: a bifunctional urea treatment on lithium-rich cathode materials. Adv Funct Mater 30:1909192. https://doi.org/10.1002/adfm.201909192

    Article  CAS  Google Scholar 

  25. Li Z, Ren Y, Mo L, Liu C, Hsu K, Ding Y, Zhang X, Li X, Hu L, Ji D, Cao G (2020) Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 14:5581–5589. https://doi.org/10.1021/acsnano.9b09963

    Article  CAS  PubMed  Google Scholar 

  26. Shirazi Moghadam Y, Dinda S, Melinte G, Fichtner M (2022) Structural and electrochemical insights from the fluorination of disordered Mn-based rock salt cathode materials. Chem Mater 34(5):2268–2281. https://doi.org/10.1021/acs.chemmater.1c04059

    Article  CAS  Google Scholar 

  27. Lu X, Xu K, Chen P, Jia K, Liu S, Wu C (2014) Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. J Mater Chem A 2:18924–18928. https://doi.org/10.1039/C4TA04487H

    Article  CAS  Google Scholar 

  28. Zhu B, Xia P, Li Y, Ho W, Yu J (2017) Fabrication and photocatalytic activity enhanced mechanism of direct z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl Surf Sci 391:175–183. https://doi.org/10.1016/j.apsusc.2016.07.104

    Article  ADS  CAS  Google Scholar 

  29. Wu B, Yang X, Jiang X, Zhang Y, Shu H, Gao P, Liu L, Wang X (2018) Synchronous tailoring surface structure and chemical composition of Li-rich-layered oxide for high-energy lithium-ion batteries. Adv Funct Mater 28:1803392. https://doi.org/10.1002/adfm.201803392

    Article  CAS  Google Scholar 

  30. Fang G, Zhu C, Chen M, Zhou J, Tang B, Cao X, Zheng X, Pan A, Liang S (2019) Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv Funct Mater 29:1808375. https://doi.org/10.1002/adfm.201808375

    Article  CAS  Google Scholar 

  31. Wang X, Pan Z, Chu X, Huang K, Cong Y, Cao R, Sarangi R, Li L, Li G, Feng S (2019) Atomic-scale insights into surface lattice oxygen activation at the spinel/perovskite interface of Co3O4/La0.3Sr0.7CoO3. Angew Chem Int Ed 58:11720–11725. https://doi.org/10.1002/anie.201905543

    Article  CAS  Google Scholar 

  32. Tang W, Zhou G, Hu C, Li A, Chen Z, Yang Z, Su J, Zhang W (2023) Regulating the anion redox and suppressing the structural distortion of cation-disordered rock-salt cathode materials to improve cycling durability through chlorine substitution. ACS Appl Mater Interfaces 15:17938–14946. https://doi.org/10.1021/acsami.3c01280

    Article  CAS  PubMed  Google Scholar 

  33. Galakhov VR, Demeter M, Bartkowski S, Neumann M, Ovechkina NA, Kurmaev EZ, Lobachevskaya NI, Mukovskii YM, Mitchell J, Ederer DL (2002) Mn 3s exchange splitting in mixed-valence manganites. Phys Rev B 65:113102. https://doi.org/10.1103/PhysRevB.65.113102

    Article  ADS  CAS  Google Scholar 

  34. Shirazi Moghadam Y, El Kharbachi A, Melinte G, Diemant T, Fichtner M (2022) Bulk and surface stabilization process of metastable Li-rich disordered rocksalt oxyfluorides as efficient cathode materials. J Electrochem Soc 169:120514. https://doi.org/10.1149/1945-7111/acaa62

    Article  CAS  Google Scholar 

  35. He YY, Wang S, Zhang HY, Chen X, Li J, Xu HY, Zhang YH, Hu KH, Lv GP, Meng Y, Xiang W (2022) Identifying the effect of fluorination on cation and anion redox activity in Mn-based cation-disordered cathode. J Colloid Interface Sci 607:1333–1342. https://doi.org/10.1016/j.jcis.2021.09.101

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Chen D, Kan WH, Chen G (2019) Understanding performance degradation in cation-disordered rock-salt oxide cathodes. Adv Energy Mater 9:1901255. https://doi.org/10.1002/aenm.201901255

    Article  CAS  Google Scholar 

  37. Kan WH, Chen D, Papp JK, Shukla AK, Huq A, Brown CM, McCloskey BD, Chen G (2018) Unravelling solid-state redox chemistry in Li1.3Nb0.3Mn0.4O2 single-crystal cathode material. Chem Mater 30:1655–1666. https://doi.org/10.1021/acs.chemmater.7b05036

    Article  CAS  Google Scholar 

  38. Chen Z, Wang S, Dai Y, Liang Y, Xin C, Jin S, Zhang C, Wang Q (2022) Ultra-high capacity of li1.6-xMn0.4TixO2 as a cathode material. J Alloys Compd 923:166356. https://doi.org/10.1016/j.jallcom.2022.166356

    Article  CAS  Google Scholar 

  39. Geng F, Hu B, Li C, Zhao C, Lafon O, Trebosc J, Amoureux J-P, Shen M, Hu B (2020) Anionic redox reactions and structural degradation in a cation-disordered rock-salt Li1.2Ti0.4Mn0.4O2 cathode material revealed by solid-state MNR and EPR. J Mater Chem A 8:16515–16526. https://doi.org/10.1039/d0ta03358h

    Article  CAS  Google Scholar 

  40. Lee KT, Jeong S, Cho J (2013) Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Acc Chem Res 46:1161–1170. https://doi.org/10.1021/ar200224h

    Article  CAS  PubMed  Google Scholar 

  41. Tang W, Li A, Zhou G, Chen Z, Yang Z, Su J, Zhang W (2022) Structural stabilization of cation-disordered rock-salt cathode materials: coupling between a high-ratio inactive Ti4+ cation and a Mn2+/Mn4+ two-electron redox pair. ACS Appl Mater Interfaces 14:38865–38874. https://doi.org/10.1021/acsami.2c10652

    Article  CAS  PubMed  Google Scholar 

  42. Chung H, Lebens-Higgins Z, Sayahpour B, Mejia C, Kamm GE, Li YX, Huang R, Piper LFJ, Chapman KW, Doux JM, Meng YS (2021) Experimental considerations to study Li-excess disordered rock salt cathode materials. J Mater Chem A 9:1720–1732. https://doi.org/10.1039/d0ta07836k

    Article  CAS  Google Scholar 

  43. Brinkmann J-P, Ehteshami-Flammer N, Luo M, Leissing M, Roeser S, Nowak S, Yang Y, Winter M, Li J (2021) Compatibility of various electrolytes with cation disordered rocksalt cathodes in lithium ion batteries. ACS Appl Mater Interfaces 4:10909–10920. https://doi.org/10.1021/acsaem.1c01879

    Article  CAS  Google Scholar 

  44. Jiang G, Hu Z, Xiong J, Zhu X, Yuan S (2018) Enhanced performance of LiFePO4 originating from the synergistic effect of graphene modification and carbon coating. J Alloys Compd 767:528–537. https://doi.org/10.1016/j.jallcom.2018.07.078

    Article  CAS  Google Scholar 

  45. Guan P, Min J, Chen F, Zhang S, Zhu Y, Liu C, Hu Y, Wan T, Li M, Liu Y, Su D, Hart J, Li Z, Chu D (2023) Dual-modification of Ni-rich cathode materials through strontium titanate coating and thermal treatment. J Colloid Interf Sci 652:1184–1194. https://doi.org/10.1016/j.jcis.2023.08.101

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Hubei Province Technology Innovation Project (2018AAA056), an Opening Fund of The Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, data curation, formal analysis, writing—original draft: Minyi Su; methodology, data curation, investigation: Yu Yan, Yining Sun. Investigation: Haiying Xie; conceptualization: Yaming Cheng; validation, supervision: Jian Xiong. Conceptualization, writing—review, and editing, supervision, validation: Guodong Jiang.

Corresponding author

Correspondence to Guodong Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, M., Yan, Y., Sun, Y. et al. Dual-functional urea induced interface reaction enables the improved cycling stability of cation-disordered Li1.2Ti0.4Mn0.4O2 cathode. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05831-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05831-8

Keywords

Navigation