Skip to main content
Log in

Electrochemical characteristics of Co3O4 nanoparticles synthesized via the hydrothermal approach for supercapacitor applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cobalt oxide (Co3O4), a transition metal oxide known for its favourable capacitive properties and surface characteristics, is a promising candidate for electrode materials in supercapacitive energy storage applications. This study presents a comprehensive analysis of cobalt oxide nanoparticles synthesized through the hydrothermal method at varying synthesis temperatures, focusing on their structural, optical, electrochemical, and surface properties. X-ray diffraction analysis confirmed the cubic spinel structure of Co3O4, while Raman spectroscopy verified the phase composition of the nanoparticles. X-ray photoelectron spectroscopy offered insights into the near-surface chemistry of the synthesized material. The study determined two direct bandgaps of Co3O4 through absorption spectra and Tauc plots. To assess surface morphology and particle size distribution, field-emitting scanning electron microscopy and transmission electron microscopy were employed. Electrochemical investigations involved cyclic voltammetry and Nyquist plots, while galvanostatic charge–discharge tests demonstrated a specific capacitance (\({C}_{sp}\)) of 450 Fg−1 at 1 Ag−1. Impedance analysis indicated favourable capacitive behaviour with low charge transfer resistance. Furthermore, the study observed cyclic stability with a capacitive retention rate exceeding 88% at a current density of 20 Ag−1 over 10,000 cycles. The paper also discusses the capacitive and diffusion-controlled charge storage mechanisms at lower scan rates, emphasizing the potential of Co3O4 nanoparticles as the electrode material in the development of supercapacitor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that has been used is confidential.

References

  1. Jia R, Shen G, Qu F, Chen D (2020) Energy Storage Mater 27:169

    Article  Google Scholar 

  2. Salunkhe RR, Tang J, Kamachi Y, Nakato T, Kim JH, Yamauchi Y (2015) ACS Nano 9:6288

    Article  CAS  PubMed  Google Scholar 

  3. Gao P, Niu W, Quanji Z, Yang Y, Lv Y (2016) Adv Comput Sci Res 63:168

    Google Scholar 

  4. Rajendran V, Mohan AMV, Jayaraman M, Nakagawa T (2019) Nano Energy 65:104055

    Article  CAS  Google Scholar 

  5. Zhang C, Xie L, Song W, Wang J, Sun G, Li K (2013) J Electroanal Chem 706:1

    Article  CAS  Google Scholar 

  6. Valan MF, Manikandan A, Antony SA (2015) J Nanosci Nanotechnol 15:4580

    Article  CAS  PubMed  Google Scholar 

  7. Latha KP, Prema C, Sundar SM (2018) J Nanosci Technol 4:475

    Article  Google Scholar 

  8. Kang M, Zhou H, Mater AIMS (2015) Sci 2:16

    CAS  Google Scholar 

  9. Ghiasi M, Malekzadeh A, Mardani H (2015) Mater Sci Semicond Process 1

  10. Siddique M, Khan NM (2021) Z Phys Chem 235:663

    Article  CAS  Google Scholar 

  11. Xu W, Lyu F, Bai Y, Gao A, Feng J, Cai Z, Yin Y (2018) Nano Energy 43:110

    Article  CAS  Google Scholar 

  12. Chrisma RB, Avani AV, Anila EI (2023) Mater Today Proc 1–6

  13. Yang H, Hu Y, Zhang X, Qiu G (2004) Mater Lett 58:387

    Article  CAS  Google Scholar 

  14. Shaheen I, Hussain I, Zahra T, Javed MS, Shah SSA, Khan K, Hanif MB, Assiri MA, Said Z, Arifeen WU, Akkinepally B, Zhang K (2023) J Energy Storage 72:108719

    Article  Google Scholar 

  15. Priyadharsini C, Anbarasan P, Aroulmoji V, Siva (2021) AEGAEUM J 751

  16. Wang X, Xia H, Wang X, Gao J, Shi B, Fang Y (2016) J Alloys Compd 686:969

    Article  CAS  Google Scholar 

  17. Jiang Y, Chen L, Zhang H, Zhang Q, Chen W, Zhu J, Song D (2016) Chem Eng J 292:1

    Article  CAS  Google Scholar 

  18. Jang GS, Ameen S, Akhtar MS, Shin HS (2018) Ceram Int 44:588

    Article  CAS  Google Scholar 

  19. Vennela AB, Mangalaraj D, Muthukumarasamy N, Agilan S, Hemalatha KV (2019) 14:3535

    CAS  Google Scholar 

  20. Pal J, Chauhan P (2010) Mater Charact 61:575

    Article  CAS  Google Scholar 

  21. Hadjievl VG, Iliev MN, Vergilovs IV (1988) J Phys 199:3

    Google Scholar 

  22. Zhang L, Zhao X, Ma W, Wu M, Qian N, Lu W (2013) CrystEngComm 15:1389

    Article  CAS  Google Scholar 

  23. Rashad M, Rüsing M, Berth G, Lischka K, Pawlis A (2013) J Nanomater 6

  24. Vijitha SKJ, Mohanraj K, Jebin RP (2023) Chem Phys Impact 6:100143

    Article  Google Scholar 

  25. Mahoney L, Peng R, Wu CM, Baltrusaitis J, Koodali RT (2015) Int J Hydrogen Energy 40:10795

    Article  CAS  Google Scholar 

  26. Alburquenque D, Vargas E, Denardin JC, Escrig J, Marco JF, Ortiz J, Gautier JL (2014) Mater Charact 93:191

    Article  CAS  Google Scholar 

  27. Huang Q, Zhang J, He Z, Shi P, Qin X, Yao W (2017) Chem Eng J 313:1088

    Article  CAS  Google Scholar 

  28. Kunhikrishnan L, Shanmugham R (2021) Mater Charact 177:111160

    Article  CAS  Google Scholar 

  29. Naveen AN, Selladurai S (2014) Electrochim Acta 125:404

    Article  CAS  Google Scholar 

  30. Vijayakumar S, Kiruthika Ponnalagi A, Nagamuthu S, Muralidharan G (2013) Electrochim Acta 106:500

  31. Liu F, Su H, Jin L, Zhang H, Chu X, Yang W (2017) J Colloid Interface Sci 505:796

    Article  CAS  PubMed  Google Scholar 

  32. Thangavelu K, Parameswari K, Kuppusamy K, Haldorai Y (2011) Mater Lett 65:1482

    Article  CAS  Google Scholar 

  33. Yan J, Wei T, Qiao W, Shao B, Zhao Q, Zhang L, Fan Z (2010) Electrochim Acta 55:6973

    Article  CAS  Google Scholar 

  34. Priyadharsini CI, Marimuthu G, Pazhanivel T, Anbarasan PM, Aroulmoji V, Siva V, Mohana L (2020) J Sol-Gel Sci Technol 96:416

    Article  CAS  Google Scholar 

  35. Xu J, Gao L, Cao J, Wang W, Chen Z (2010) Electrochim Acta 56:732

    Article  CAS  Google Scholar 

  36. Xie L, Li K, Sun G, Hu Z, Lv C, Wang J, Zhang C (2013) J Solid State Electrochem 17:55

    Article  CAS  Google Scholar 

  37. Ullah E, Ullah Shah MZ, Ahmad SA, Sajjad M, Khan S, Alzahrani FM, Yahya AEM, Eldin SM, Akkinepally B, Shah A, Guo S (2023) Chemosphere 321:138004

  38. Yadav AA, Hunge YM, Kulkarni SB (2018) J Mater Sci Mater Electron 29:16401

    Article  CAS  Google Scholar 

  39. Zhang X, Akkinepally B, Han K, Jelani M, Javed MS, Khan S, Hussain I, Hassan AM, Alshgari RA, Mushab M, Arifeen WU, Han W (2023) J Energy Storage 72:108504

    Article  Google Scholar 

  40. Chrisma RB, Jafri RI, Anila EI (2023) J Mater Sci

Download references

Acknowledgements

The research done was supported by the Centre for Advanced Research (CARD), Christ (Deemed to be University), Bangalore, Karnataka.

Funding

The authors would like to thank Christ (Deemed to be University), Bangalore for the internal project under the Seed Money Scheme (SMSS-2218).

Author information

Authors and Affiliations

Authors

Contributions

CRB: conceptualization, methodology, validation, writing—original draft. AVA: review and editing. SS: analysing and reviewing. EIA: supervision, writing—review and editing.

Corresponding author

Correspondence to E. I. Anila.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, C.R., Avani, A.V., Shaji, S. et al. Electrochemical characteristics of Co3O4 nanoparticles synthesized via the hydrothermal approach for supercapacitor applications. J Solid State Electrochem (2023). https://doi.org/10.1007/s10008-023-05744-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-023-05744-y

Keywords

Navigation