Skip to main content
Log in

Theory–experiment interaction as a cornerstone of specialized electrochemical education: Invent your own less conventional problems

  • Feature Article
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This article is an attempt to share the author’s experience of teaching electrochemistry at an individualized level. In addition to lectures and seminars, it is proposed to solve individually the problems based on experimental data published in the literature. The thought-provoking problems should be less straightforward and even less exact. To illustrate the approach, theory–experiment interactions are considered and exampled by an electrostatics-based model for the electron transfer elementary step. Two particular problems are presented as illustrations. Possible solutions, typical students’ mistakes, and misunderstandings are discussed step-by-step. This pedagogical approach is quite suitable for applied electrochemistry as well. It is time-consuming, but the author cannot imagine any alternative approach to generate qualified electrochemists for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scholz F (2023) Electrochemistry and education. J Solid State Electrochemistry, in press,. https://doi.org/10.1007/s10008-023-05586-8

    Article  Google Scholar 

  2. Tsirlina G (2020) Evolution of electrochemical education. J Solid State Electrochem 24:2679–2684. https://doi.org/10.1007/s10008-020-04752-6

    Article  CAS  Google Scholar 

  3. Compton RG, Sokolov SV (2023) Electrochemistry needs electrochemists: “goodbye to rotating discs.” J Solid State Electrochemistry, in press,. https://doi.org/10.1007/s10008-023-05443-8

    Article  Google Scholar 

  4. Akbashev A (2023) Electrochemical colloquium and beyond: opportunities for online education in electrochemistry. In: Abstracts 243rd ECS Meeting, L01–2432

  5. Frumkin A (1933) Wasserstoffüberspannung und Struktur der Doppelschicht. Z Phys Chem A 164A:121–133. https://doi.org/10.1515/zpch-1933-16411

    Article  Google Scholar 

  6. Frumkin A, Nikolaeva-Fedorovich NV, Berezina NP, Keis KE (1975) The electroreduction of the S2O82- anion. J Electroanal Chem 58:189–201. https://doi.org/10.1016/S0022-0728(75)80352-4

    Article  CAS  Google Scholar 

  7. Frumkin AN, Florianovich GM (1951) Elektrovosstanovlenie anionov [Electroreduction of anions]. Doklady AN SSSR 80:907–910 (in Russian)

    CAS  Google Scholar 

  8. Frumkin AN, Petry OA, Nikolaeva-Fedorovich NV (1963) On the determination of the value of the charge of the reacting particle and of the constant α from the dependence of the rate of electro-reduction on the potential and concentration of the solution. Electrochim Acta 8:177–192. https://doi.org/10.1016/0013-4686(63)80018-3

    Article  CAS  Google Scholar 

  9. Tsirlina G (2017) The role of supporting electrolyte in heterogeneous electron transfer. J Solid State Electrochemistry 21:1833–1845. https://doi.org/10.1007/s10008-017-3669-1

    Article  CAS  Google Scholar 

  10. Gierst L, Cornelissen P (1960) L’influence de la nature et de la concentration de l’électrolyte-support sur la morphologie des ondes polarographiques du système EuII-EuIII. Collect Czech Chem Commun 25:3004–3015. https://doi.org/10.1135/cccc19603004

    Article  CAS  Google Scholar 

  11. Asada K, Delahay P, Sundaram AK (1961) Local field effect and failure of the double layer correction in electrode kinetics. J Amer Chem Soc 83:3396–3400. https://doi.org/10.1021/ja01477a010

    Article  CAS  Google Scholar 

  12. Gavaghan DJ, Feldberg SW (2000) Extended electron transfer and the Frumkin correction. J Electroanal Chem 491:103–110. https://doi.org/10.1016/S0022-0728(00)00210-2

    Article  CAS  Google Scholar 

  13. Erdey-Gruz T, Volmer M (1930) Zur Theorie der Wasserstoff Überspannung. Z Phys Chem A 150:203–213. https://doi.org/10.1515/zpch-1930-15020

    Article  CAS  Google Scholar 

  14. Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, Trasatti S (2014) Definition of the transfer coefficient in electrochemistry (IUPAC Recommendations 2014). Pure Appl Chem 86:259–262. https://doi.org/10.1515/pac-2014-5025

    Article  CAS  Google Scholar 

  15. Delahay P (1965) Double layer and electrode kinetics. Interscience-Wiley, New York

    Google Scholar 

  16. Russel CD (1963) Charge and outer Helmholtz potential for a mercury electrode in aqueous NaF at 25°. J Electroanal Chem 6:486–490. https://doi.org/10.1016/0022-0728(63)80180-1

    Article  Google Scholar 

  17. Petrii OA, Nazmutdinov RR, Bronshtein MD, Tsirlina GA (2007) Life of the Tafel equation: current understanding and prospects for the second century. Electrochim Acta 52:3493–3504. https://doi.org/10.1016/j.electacta.2006.10.014

    Article  CAS  Google Scholar 

  18. Kuznetsov AM, Nazmutdinov RR, Schmickler W (2002) Monte Carlo simulation of electrochemical electron transfer processes. J Electroanal Chem 532:171–180. https://doi.org/10.1016/s0022-0728(02)00982-8

    Article  CAS  Google Scholar 

  19. Zagrebin PA, Tsirlina GA, Nazmutdinov RR, Petrii OA, Probst M (2006) Corrected Marcus plots. J Solid State Electrochem 10:157–167. https://doi.org/10.1007/s10008-005-0058-y

    Article  CAS  Google Scholar 

  20. Mishchenchuk VV, Nechyporuk VV, Tkachuk MM, Yuz‘kova VD, (2013) Mathematical modeling of nonequilibrium behavior of electrochemical systems with the electroreduction of anions. Electrochim Acta 108:153–166. https://doi.org/10.1016/j.electacta.2013.06.089

    Article  CAS  Google Scholar 

  21. Pendergast AP, White HS (2023) Double-layer inhibition of peroxydisulfate reduction at mercury ultramicroelectrodes. a quantitative analysis of the Frumkin effect including molecular transport and long-range electron transfer. J Phys Chem C 127:11283–11297. https://doi.org/10.1021/acs.jpcc.3c01822

    Article  CAS  Google Scholar 

  22. Hamzah HH, Aarons J, Shafiee A (2018) Review — electroreduction of peroxodisulfate: a review of a complicated reaction. J Electrochem Soc 165:H785–H798. https://doi.org/10.1149/2.1161811jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to the Pause program for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina A. Tsirlina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsirlina, G.A. Theory–experiment interaction as a cornerstone of specialized electrochemical education: Invent your own less conventional problems. J Solid State Electrochem 28, 981–993 (2024). https://doi.org/10.1007/s10008-023-05725-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05725-1

Navigation