Skip to main content
Log in

Working mechanism of CTAB as an inhibitor of platinum anode sulfur passivation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hydrogen sulfide is a toxic and hazardous gas that is commonly present in livestock farms, affecting the health of animals and workers. Electrochemical treatment is supposed to be a promising method for H2S control emission. However, this method has a disadvantage in that the product of elemental sulfur causes passivation of the electrode. Herein, hexadecyltrimethylammonium bromide (CTAB), a cationic surfactant, is introduced as an electrolyte additive to inhibition of passivation. The effect of electrolyte additives on the degradation of sulfur ions was investigated using linear sweep voltammetry, chronoamperometry, and electrical impedance spectroscopy. Electrolysis of S2− has been done in a potentiostatic regime at potential 6 V in 0.1 M potassium nitrate-supported electrolyte pH 11.5. The introduction of CTAB resulted in a 53% increase in the degradation of S2− in 3 h. In situ Raman spectrums reveal that CTAB enhances the adsorption of reactant sulfur ions on the Pt electrode, which improves the electron transfer step kinetics due to a combination of \({\uppsi }_{1}\) effect and the concept of specific adsorption. The proposed electrochemical technology introducing surfactants is promising for wastewater S2− removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cao T, Zheng Y, Dong H (2023) Control of odor emissions from livestock farms: a review. Environ Res 225:115545

    Article  CAS  PubMed  Google Scholar 

  2. Wang YC, Han MF, Jia TP, Hu XR, Zhu HQ, Tong Z, Lin YT, Wang C, Liu DZ, Peng YZ, Wang G (2021) Emissions, measurement, and control of odor in livestock farms: a review. Sci Total Environ 776:145735

  3. Huang H, Yu Y, Chung KH (2009) Recovery of hydrogen and sulfur by indirect electrolysis of hydrogen sulfide. Energy Fuels 23(9):4420–4425

    Article  CAS  Google Scholar 

  4. Park J, Kang T, Heo Y, Lee K, Kim K, Lee K, Yoon C (2020) Evaluation of short-term exposure levels on ammonia and hydrogen sulfide during manure-handling processes at livestock farms. Saf Health Work 11(1):109–117

    Article  PubMed  Google Scholar 

  5. O’Leary T, Merkowsky K, Trask C, Bennett W, Kirychuk S (2021) Operator and potential exposure to hydrogen sulfide: a study of the british columbia dairy industry. J Agromedicine 26(4):381–388

    Article  CAS  PubMed  Google Scholar 

  6. Grant RH, Boehm MT, Hagevoort GR (2022) Emissions of hydrogen sulfide from a western open-lot dairy. J Environ Qual 51(4):622–631

    Article  CAS  PubMed  Google Scholar 

  7. Gruzdev EV, Latygolets EA, Beletsky AV, Grigoriev MA, Mardanov AV, Kadyrbaev MK, Ikkert OP, Karnachuk OV, Ravin NV (2021) The microbial community of poultry farm waste and its role in hydrogen sulfide production. Microbiology 90(4):507–511

    Article  CAS  Google Scholar 

  8. Li X, Fu Q, Wang W, Liu X, He D, Jiang X, Yang Q, Wang D (2023) Surfactant enhances anaerobic fermentative hydrogen sulfide production: changes in sulfur-containing organics structure and microbial community. Sci Total Environ 880:163025

    Article  CAS  PubMed  Google Scholar 

  9. Leyva-Jimenez H, Shen S, McCormick K, Martin M, Liu P, Haag D, Galbraith E, Blair M (2022) Applied research note: evaluation of a Bacillus-based direct-fed microbial as a strategy to reduce hydrogen sulfide emissions from poultry excreta using a practical monitoring method. J Appl Poultry Res 31(1):100231

    Article  CAS  Google Scholar 

  10. Ding L, Lin H, Hetchler B, Wang Y, Wei W, Hu B (2021) Electrochemical mitigation of hydrogen sulfide in deep-pit swine manure storage. Sci Total Environ 777:146048

    Article  CAS  PubMed  Google Scholar 

  11. Beswick-Honn JM, Peters TM, Anthony TR (2017) Evaluation of low-cost hydrogen sulfide monitors for use in livestock production. J Agric Saf Health 23(4):265–279

    Article  PubMed  PubMed Central  Google Scholar 

  12. Grant RH, Boehm MT (2023) Effects of atmospheric and manure surface conditions on H(2) S emissions from an in-ground finisher hog manure slurry tank. J Environ Qual 52(3):573–583

    Article  CAS  PubMed  Google Scholar 

  13. Guarrasi J, Trask C, Kirychuk S (2015) A systematic review of occupational exposure to hydrogen sulfide in livestock operations. J Agromedicine 20(2):225–236

    Article  PubMed  Google Scholar 

  14. Zhao W, Manno M, Al Wahedi Y, Tsapatsis M, Stein A (2021) Regenerable sorbent pellets for the removal of dilute H2S from claus process tail gas. Ind Eng Chem Res 60(50):18443–18451

    Article  CAS  Google Scholar 

  15. Salman OA, Bishara A, Marafi A (1987) An alternative to the claus process for treating hydrogen sulfide. Energy 12(12):1227–1232

    Article  CAS  Google Scholar 

  16. Huang H, Shang J, Yu Y, Chung KH (2019) Recovery of hydrogen from hydrogen sulfide by indirect electrolysis process. Int J Hydrogen Energy 44(11):5108–5113

    Article  CAS  Google Scholar 

  17. Pikaar I, Likosova EM, Freguia S, Keller J, Rabaey K, Yuan Z (2015) Electrochemical abatement of hydrogen sulfide from waste streams. Crit Rev Environ Sci Technol 45(14):1555–1578

    Article  CAS  Google Scholar 

  18. Wang Y, Lin H, Hu B (2019) Electrochemical removal of hydrogen sulfide from swine manure. Chem Eng J 356:210–218

    Article  CAS  Google Scholar 

  19. Kang J-H, Yoon Y, Song J (2019) Simultaneous removal of hydrogen sulfide and ammonia using a combined system with absorption and electrochemical oxidation. Journal of Environmental Science and Health, Part A 54(14):1430–1440

    Article  CAS  Google Scholar 

  20. Dutta PK, Rabaey K, Yuan Z, Keller J (2008) Spontaneous electrochemical removal of aqueous sulfide. Water Res 42(20):4965–4975

    Article  CAS  PubMed  Google Scholar 

  21. Hall JR, Schoenfisch MH (2018) Direct electrochemical sensing of hydrogen sulfide without sulfur poisoning. Anal Chem 90(8):5194–5200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brown MD, Hall JR, Schoenfisch MH (2019) A direct and selective electrochemical hydrogen sulfide sensor. Anal Chim Acta 1045:67–76

    Article  CAS  PubMed  Google Scholar 

  23. Jeromiyas N, Mani V, Chang PC, Huang CH, Salama KN, Huang ST (2021) Anti-poisoning electrode for real-time in-situ monitoring of hydrogen sulfide release. Sens Actuators B Chem 326:128844

    Article  CAS  Google Scholar 

  24. Chen CH, Halford A, Walker M, Brennan C, Lai SC, Fermin DJ, Unwin PR, Rodriguez P (2018) Electrochemical characterization and regeneration of sulfur poisoned Pt catalysts in aqueous media. J Electroanal Chem 816:138–148

    Article  CAS  Google Scholar 

  25. Shih YS, Lee JL (1986) Continuous solvent extraction of sulfur from the electrochemical oxidation of a basic sulfide solution in the CSTER system. Ind Eng Chem Process Des Dev 25(3):834–836

    Article  CAS  Google Scholar 

  26. Sedlak JM, Blurton KF (1976) Electrochemical determination of hydrogen sulphide in air. Talanta 23(6):445–448

    Article  CAS  PubMed  Google Scholar 

  27. Pan C, Wu F, Mao J, Wu W, Zhao G, Ji W, Ma W, Yu P, Mao L (2022) Highly stable and selective sensing of hydrogen sulfide in living mouse brain with NiN4 single-atom catalyst-based galvanic redox potentiometry. J Am Chem Soc 144(32):14678–14686

    Article  CAS  PubMed  Google Scholar 

  28. Yi QF, Chen QY, Zhang PM (1998) Electrochemical study of sulfide solution in the presence of surfactants. J Environ Sci 10(3):372–377

    CAS  Google Scholar 

  29. Zha AY, Zha QB, Li Z, Zhang HM, Ma XF, Xie W, Zhu MS (2022) Surfactant-enhanced electrochemical detection of bisphenol A based on Au on ZnO/reduced graphene oxide sensor. Rare Met 42(4):1274–1282

    Article  Google Scholar 

  30. Fouda AE, Al-Bonayan AM, Eissa M, Eid DM (2022) Electrochemical and quantum chemical studies on the corrosion inhibition of 1037 carbon steel by different types of surfactants. RSC Adv 12(6):3253–3273

    Article  Google Scholar 

  31. Wang J, Zhang L, Zhang H (2018) Effects of electrolyte additive on the electrochemical performance of Si/C anode for lithium-ion batteries. Ionics 24(11):3691–3698

    Article  CAS  Google Scholar 

  32. Hao J, Long J, Li B, Li X, Zhang S, Yang F, Zeng X, Yang Z, Pang WK, Guo Z (2019) Toward high‐performance hybrid Zn‐based batteries via deeply understanding their mechanism and using electrolyte additive. Adv Funct Mater 29(34)

  33. Extrand CW (2003) A thermodynamic model for wetting free energies from contact angles. Lamgmuir 19:646–649

    Article  CAS  Google Scholar 

  34. Bai T, Wu F, Zhang Y, Mao C, Wang G, Wu Y, Bai H, Li Y (2022) Sulfur modification with dipentene and ethylhexyl acrylate to enhance asphalt mixture performance. Constr Build Mater 343

  35. Liu X, Wang X, Long J, Xie X, Wu L, Wang Z, Fu Y, Chen H, Xiang K, Liu H (2023) Research on the selective electrocatalytic reduction of SO2 to recover S0 by Pb electrode metals

  36. Ke S, Cui B, Sun C, Qin Y, Zhang J, Dou M (2022) Intriguing H2S tolerance of the PtRu alloy for hydrogen oxidation catalysis in PEMFCs: weakened Pt–S binding with slower adsorption kinetics. ACS Appl Mater Interfaces 14(42):47765–47774

    Article  CAS  PubMed  Google Scholar 

  37. Shin S, Greco F, Maier F, Steinrück HP (2021) Enrichment effects of ionic liquid mixtures at polarized electrode interfaces monitored by potential screening. Phys Chem Chem Phys 23(18):10756–10762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu-I SP, Ying Li, De-Jun Chen, YuYe J, Tong B (2010) In situ surface-enhanced Raman scattering spectroscopic study of sulfur adsorption on polycrystalline platinum electrode surface. J Electrochem 16(3):255–262

    Google Scholar 

  39. Wang YY, Gu JK, Zhang BH, Li GR, Liu S, Gao XP (2022) Specific Adsorption reinforced interface enabling stable lithium metal electrode. Adv Funct Mater 32(18)

Download references

Funding

This work was financially supported by Guangdong Province Science and Technology Plan Application-oriented Projects (2016B020240003).

Author information

Authors and Affiliations

Authors

Contributions

Lixin Huang: investigation, formal analysis, writing-original draft, writing-review and editing; Jie Tan, Zhenjie Yuan, and Yuxin Li: formal analysis; Zhanchang Pan: formal analysis, writing-review and editing, funding acquisition; Guanghui Hu: formal analysis, writing-review; Yanbin Xu: formal analysis, writing-review and editing, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Zhanchang Pan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The manuscript is not previously published in the same or very similar form in other journals. The manuscript is not currently under consideration in other journals.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Tan, J., Yuan, Z. et al. Working mechanism of CTAB as an inhibitor of platinum anode sulfur passivation. J Solid State Electrochem 28, 137–146 (2024). https://doi.org/10.1007/s10008-023-05658-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05658-9

Keywords

Navigation