Skip to main content

Advertisement

Log in

Electrochemical performance of KxVO2 nanosheets as cathode material for aqueous zinc-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Due to the low cost and better security, aqueous zinc-ion batteries (AZIBs) are receiving a great deal of attention for large-scale energy storage. Vanadium-based materials have immense potential as AZIB cathode materials. Herein, the KxVO2 (KVO) cathode materials synthesized by the hydrothermal method. The morphology and structure of KVO were characterized by X-ray diffraction (XRD), Fourier infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). FESEM demonstrated that sample displayed sheet morphology. The electrochemical performance of KVO electrode in aqueous zinc ion battery was determined by cyclic voltammetry and galvanostatic charge–discharge test after assembly of Zn-KVO button cell using 3 M ZnSO4 aqueous electrolyte. The Zn-KVO battery has a capacity of 435.8 mAh⋅g−1 at 0.2 A g−1. After 1000 cycles at 4 A g−1, the cycle reversible capacitance retention rate was 78% of the original capacity. Compared with V2O5 electrode, the capacity and cycle stability of KVO electrode have been significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Armand M, Tarascon JM (2008) Nature 451:652. https://doi.org/10.1038/451652a

    Article  CAS  PubMed  Google Scholar 

  2. Cano ZP, Banham D, Ye S et al (2018) Nat Energy 3:279. https://doi.org/10.1038/s41560-018-0108-1

    Article  Google Scholar 

  3. Dunn B, Kamath H, Tarascon JM (2011) Science 334:928. https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  Google Scholar 

  4. Chao D, Zhou W, Ye C et al (2019) Angew Chem Int Ed Engl 58:7823. https://doi.org/10.1002/anie.201904174

    Article  CAS  PubMed  Google Scholar 

  5. Guo X, Fang G, Zhang W et al (2018) Adv Ener Mater 8. https://doi.org/10.1002/aenm.201801819

  6. Ming J, Guo J, Xia C, Wang W, Alshareef HN (2019) Mater Sci Eng R Rep 135:58. https://doi.org/10.1016/j.mser.2018.10.002

    Article  Google Scholar 

  7. Song M, Tan H, Chao D, Fan HJ (2018) Adv Funct Mater 28. https://doi.org/10.1002/adfm.201802564

  8. Islam S, Alfaruqi MH, Mathew V et al (2017) J Mater Chem A 5:23299. https://doi.org/10.1039/c7ta07170a

    Article  CAS  Google Scholar 

  9. Lee B, Lee HR, Kim H, Chung KY, Cho BW, Oh SH (2015) Chem Commun (Camb) 51:9265. https://doi.org/10.1039/c5cc02585k

    Article  CAS  PubMed  Google Scholar 

  10. Pan H, Shao Y, Yan P et al (2016) Nature Energy 1. https://doi.org/10.1038/nenergy.2016.39

  11. Yadav GG, Gallaway JW, Turney DE et al (2017) Nat Commun 8:14424. https://doi.org/10.1038/ncomms14424

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dai X, Wan F, Zhang L, Cao H, Niu Z (2019) Energy Storage Materials 17:143. https://doi.org/10.1016/j.ensm.2018.07.022

    Article  Google Scholar 

  13. Hu P, Yan M, Zhu T et al (2017) ACS Appl Mater Interfaces 9:42717. https://doi.org/10.1021/acsami.7b13110

    Article  CAS  PubMed  Google Scholar 

  14. Pang Q, Sun C, Yu Y et al (2018) Adv Ener Mater 8. https://doi.org/10.1002/aenm.201800144

  15. Senguttuvan P, Han SD, Kim S et al (2016) Adv Ener Mater 6. https://doi.org/10.1002/aenm.201600826

  16. Kasiri G, Trócoli R, Bani Hashemi A, La Mantia F (2016) Electrochimica Acta 222:74. https://doi.org/10.1016/j.electacta.2016.10.155

  17. Trocoli R, La Mantia F (2015) Chemsuschem 8:481. https://doi.org/10.1002/cssc.201403143

    Article  CAS  PubMed  Google Scholar 

  18. Liu Z, Pulletikurthi G, Endres F (2016) ACS Appl Mater Interfaces 8:12158. https://doi.org/10.1021/acsami.6b01592

    Article  CAS  PubMed  Google Scholar 

  19. Xu W, Sun C, Zhao K et al (2019) Energy Storage Materials 16:527. https://doi.org/10.1016/j.ensm.2018.09.009

    Article  Google Scholar 

  20. Jiao T, Yang Q, Wu S et al (2019) J Mater Chem A 7:16330. https://doi.org/10.1039/c9ta04798k

    Article  CAS  Google Scholar 

  21. Zhao Q, Huang W, Luo Z et al (2018) Sci Adv 4:eaao1761. https://doi.org/10.1126/sciadv.aao1761

  22. Zhang N, Cheng F, Liu Y et al (2016) J Am Chem Soc 138:12894. https://doi.org/10.1021/jacs.6b05958

    Article  CAS  PubMed  Google Scholar 

  23. Liu P, Zhu K, Gao Y, Luo H, Lu L (2017) Adv Ener Mater 7. https://doi.org/10.1002/aenm.201700547

  24. Zhang Y, Jiang H, Xu L, Gao Z, Meng C (2019) ACS Applied Energy Materials 2:7861. https://doi.org/10.1021/acsaem.9b01299

    Article  CAS  Google Scholar 

  25. Chao D, Zhu CR, Song M et al (2018) Adv Mater 30:e1803181. https://doi.org/10.1002/adma.201803181

  26. Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF (2016) Nat Ener 1. https://doi.org/10.1038/nenergy.2016.119

  27. Yang Y, Tang Y, Fang G et al (2018) Energy Environ Sci 11:3157. https://doi.org/10.1039/c8ee01651h

    Article  CAS  Google Scholar 

  28. Soundharrajan V, Sambandam B, Kim S et al (2018) Nano Lett 18:2402. https://doi.org/10.1021/acs.nanolett.7b05403

    Article  CAS  PubMed  Google Scholar 

  29. Islam S, Alfaruqi MH, Sambandam B et al (2019) Chem Commun (Camb) 55:3793. https://doi.org/10.1039/c9cc00897g

    Article  CAS  PubMed  Google Scholar 

  30. Meng J, Liu Z, Niu C et al (2016) J Mater Chem A 4:4893. https://doi.org/10.1039/c6ta00556j

    Article  CAS  Google Scholar 

  31. Tian M, Liu C, Zheng J et al (2020) Energy Storage Materials 29:9. https://doi.org/10.1016/j.ensm.2020.03.024

    Article  Google Scholar 

  32. Zhao Y, Han C, Yang J et al (2015) Nano Lett 15:2180. https://doi.org/10.1021/acs.nanolett.5b00284

    Article  CAS  PubMed  Google Scholar 

  33. O’Dwyer C, Lavayen V, Newcomb SB et al (2007) J Electrochem Soc 154. https://doi.org/10.1149/1.2746556

  34. Somani PR, Marimuthu R, Mandale AB (2001) Polymer 42:2991. https://doi.org/10.1016/s0032-3861(00)00670-4

    Article  CAS  Google Scholar 

  35. Hao Y, Zhang S, Tao P et al (2020) ChemNanoMat 6:797. https://doi.org/10.1002/cnma.202000105

    Article  CAS  Google Scholar 

  36. Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R (2004) J Electron Spectrosc Relat Phenom 135:167. https://doi.org/10.1016/j.elspec.2004.03.004

    Article  CAS  Google Scholar 

  37. Cai Y, Fang G, Zhou J et al (2017) Nano Res 11:449. https://doi.org/10.1007/s12274-017-1653-9

    Article  CAS  Google Scholar 

  38. Zhao J, Ren H, Liang Q et al (2019) Nano Energy 62:94. https://doi.org/10.1016/j.nanoen.2019.05.010

    Article  CAS  Google Scholar 

  39. Shan L, Zhou J, Han M et al (2019) J Mater Chem A 7:7355. https://doi.org/10.1039/c9ta00125e

    Article  CAS  Google Scholar 

  40. Zhu K, Wu T, Huang K (2019) Adv Ener Mater 9. https://doi.org/10.1002/aenm.201901968

  41. Yan M, He P, Chen Y et al (2018) Adv Mater 30. https://doi.org/10.1002/adma.201703725

  42. Augustyn V, Come J, Lowe MA et al (2013) Nat Mater 12:518. https://doi.org/10.1038/nmat3601

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y, Pan Z, Tian D et al (2020) Chem Eng J 399. https://doi.org/10.1016/j.cej.2020.125842

  44. Li S, Wei X, Wu C, Zhang B, Wu S, Lin Z (2021) ACS Applied Energy Materials 4:4208. https://doi.org/10.1021/acsaem.1c00573

    Article  CAS  Google Scholar 

  45. Liu C, Li R, Liu W, Shen G, Chen D (2021) ACS Appl Mater Interfaces 13:37194. https://doi.org/10.1021/acsami.1c09951

    Article  CAS  PubMed  Google Scholar 

  46. Huang C, Wang Q, Tian G, Zhang D (2021) Mater Today Phys 21:100518. https://doi.org/10.1016/j.mtphys.2021.100518

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51472189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanyao Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1006 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Wang, F., Wei, W. et al. Electrochemical performance of KxVO2 nanosheets as cathode material for aqueous zinc-ion batteries. J Solid State Electrochem 27, 2779–2786 (2023). https://doi.org/10.1007/s10008-023-05550-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05550-6

Keywords

Navigation