Skip to main content

Advertisement

Log in

EPDM rubber-based membranes for electrochemical water splitting and carbon dioxide reduction reactions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Considering the importance of storing electricity derived from any of the renewable energy resources such as sunlight in the form of chemical fuels using carbon dioxide (CO2) and water (H2O) as energy storing materials, for the first time, “ethylene propylene diene monomer (EPDM)” rubber-based membranes are introduced to separate two compartments of electrochemical cells employed to perform water splitting and CO2 reduction reactions. Unlike commercial Zirfon® Perl membrane, the polypropylene (PP) cloth web-reinforced EPDM rubber–CaCO3 composite membrane was found to be quite stable in non-aqueous aprotic electrolyte solution of acetonitrile (MeCN) containing n-Bu4NPF6 and bmim-BF4 used for performing electrochemical CO2 reduction (ECR) reaction over Sn, MoSi2, and TiN thin film cathodes. The overpotentials noted for ECR reaction over TiN thin film were in the range of 55 mV to 138 mV with a current density of > 100 mA/cm2. The concentrations of CO2 and bmim-BF4 in the electrolyte solution had a significant effect on the reaction outcome. The hydrogen evolution reaction (HER) performance of a zero-gap single-cell alkaline–electrolyzer stack containing a PP web-reinforced EPDM rubber–ZrO2 composite membrane and nickel foam electrodes was found to be comparable with the same single-cell electrolyzer stack containing Zirfon® Perl membrane. The overpotentials associated with HER and oxygen evolution reaction (OER) over Ni electrodes in 30 wt.% aqueous KOH solution were found to be about 200 mV and 495 mV, respectively, and the current densities associated with these reactions have been noted to be > 150 mA/cm2, which are must for industrial practice of this reaction. Furthermore, the results of electrochemical reactions generated in this study suggest that unlike Zirfon® Perl membrane, the EPDM rubber-based membranes are quite inexpensive for electrochemical water splitting reaction and quite stable in MeCN-based non-aqueous aprotic electrolyte to perform ECR reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ganesh I (2023) Practicable artificial photosynthesis: the only option available today for humankind to make energy, environment, economy and life sustainable on Earth. White Falcon Publishers Book Number 978-1-63640-828-6: 1-716

  2. Ganesh I (2018) Chapter 4 - The electrochemical conversion of carbon dioxide to carbon monoxide over nanomaterial based cathodic systems: measures to take to apply this laboratory process industrially, In Applications of nanomaterials (Mohan Bhagyaraj S, Oluwafemi OS, Kalarikkal N, Thomas S, Eds.) 83–131. Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101971-9.00005-3

  3. Ganesh I (2016) Electrochemical conversion of carbon dioxide into renewable fuel chemicals – the role of nanomaterials and the commercialization. Renew Sustain Energy Rev 59:269–1297. https://doi.org/10.1016/j.rser.2016.01.026

    Article  CAS  Google Scholar 

  4. Ganesh I (2015) Solar fuels vis-a´-vis electricity generation from sunlight: the current state-of-the-art (a review). Renewable Sustainable Energy Rev 44:904–932. https://doi.org/10.1016/j.rser.2015.01.019

    Article  CAS  Google Scholar 

  5. Ganesh I (2014) Conversion of carbon dioxide into methanol – a potential liquid fuel: fundamental challenges and opportunities (a review). Renew Sustain Energy Rev 31:221–257. https://doi.org/10.1016/j.rser.2013.11.045

    Article  CAS  Google Scholar 

  6. Schreier M, Curvat L, Giordano F, Steier L, Abate A, Zakeeruddin SM, Luo J, Mayer MT, Gratzel M (2015) Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nat Commun 6:2015. https://doi.org/10.1038/ncomms8326

    Article  CAS  Google Scholar 

  7. Kinoshita T, Nonomura K, Joong Jeon N, Giordano F, Abate A, Uchida S, Kubo T, Seok SI, Nazeeruddin MK, Hagfeldt A, Gratzel M (2015) Segawa H (2015) Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells. Nat Commun 6:8834. https://doi.org/10.1038/ncomms9834

    Article  CAS  PubMed  Google Scholar 

  8. Gratzel M (2001) Photoelectrochemical cells. Nature (London, U. K.) 414: 338–344. https://doi.org/10.1038/35104607

  9. Centi G, Perathoner S (2011) CO2-based energy vectors for the storage of solar energy. Greenhouse Gas Sci Technol 1:21. https://doi.org/10.1002/ghg3.3

    Article  CAS  Google Scholar 

  10. Centi G, Perathoner S (2010) Towards solar fuels from water and CO2. Chemsuschem 3:195–208. https://doi.org/10.1002/cssc.200900289

    Article  CAS  PubMed  Google Scholar 

  11. Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191. https://doi.org/10.1016/j.cattod.2009.07.075

    Article  CAS  Google Scholar 

  12. Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products - closing the loop. Chem Soc Rev 43:7995–8048. https://doi.org/10.1039/C4CS00122B

    Article  CAS  PubMed  Google Scholar 

  13. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44:2636–2639. https://doi.org/10.1002/anie.200462121

    Article  CAS  Google Scholar 

  14. Smalley RE (2005) Future global energy prosperity: the Terawatt challenge. MRS Bull 30:412–417. https://doi.org/10.1557/mrs2005.124

    Article  Google Scholar 

  15. Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Sci 334:643–644. https://doi.org/10.1126/science.1209786

    Article  CAS  Google Scholar 

  16. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Sci 332:805–809. https://doi.org/10.1126/science.1200165

    Article  CAS  Google Scholar 

  17. Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38:109–114. https://doi.org/10.1039/B802885K

    Article  CAS  PubMed  Google Scholar 

  18. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Sci 321:1072–1075. https://doi.org/10.1126/science.1162018

    Article  CAS  Google Scholar 

  19. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735. https://doi.org/10.1073/pnas.0603395103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539–11551. https://doi.org/10.1021/ja1023496

    Article  CAS  Google Scholar 

  21. Seshadri G, Lin C, Bocarsly AB (1994) A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential. J Electroanal Chem 372:145–150. https://doi.org/10.1016/0022-0728(94)03300-5

    Article  CAS  Google Scholar 

  22. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nat 277:637–638. https://doi.org/10.1038/277637a0

    Article  CAS  Google Scholar 

  23. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nat 238:37–38. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  24. Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile SM, Steinfeld A (2010) High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Sci 330:1797–1801. https://doi.org/10.1126/science.1197834

    Article  Google Scholar 

  25. Abbott D (2010) Keeping the energy debate clean: how do we supply the world’s energy needs? Proc IEEE 98:42–66. https://doi.org/10.1109/JPROC.2009.2035162

    Article  CAS  Google Scholar 

  26. Halmon M (1978) Photoelectrochemical reduction of aqueous carbon-dioxide on p-type gallium-phosphide in liquid junction solar-cells. Nat 275:115–116. https://doi.org/10.1038/275115a0

    Article  Google Scholar 

  27. Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Sci 328:342–345. https://doi.org/10.1126/science.1185372

    Article  CAS  Google Scholar 

  28. Geletii YV, Botar B, Kogerler P, Hillesheim DA, Musaev DG, Hill CL (2008) An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew Chem Int Ed Engl 47:3896–3899. https://doi.org/10.1002/anie.200705652

    Article  CAS  PubMed  Google Scholar 

  29. Almahdi M, Dincer I, Rosen MA (2016) Analysis and assessment of methanol production by integration of carbon capture and photocatalytic hydrogen production. Inter J Greenhouse Gas Control 51:56–70. https://doi.org/10.1016/j.ijggc.2016.04.015

    Article  CAS  Google Scholar 

  30. Medina-Ramos J, Pupillo RC, Keane TP, DiMeglio JL, Rosenthal J (2015) Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts. J Am Chem Soc 137:5021–5027. https://doi.org/10.1021/ja5121088

    Article  CAS  PubMed  Google Scholar 

  31. Medina-Ramos J, DiMeglio JL, Rosenthal J (2014) Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials. J Am Chem Soc 136:8361–8367. https://doi.org/10.1021/ja501923g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Asadi M, Kumar B, Behranginia A, Rosen BA, Baskin A, Repnin N, Pisasale D, Phillips P, Zhu W, Haasch R, Klie RF, Král P, Abiade J, Salehi-Khojin A (2014) Robust carbon dioxide reduction on molybdenum disulphide edges. Nat Commun 5:2014. https://doi.org/10.1038/ncomms5470

    Article  CAS  Google Scholar 

  33. Salehi-Khojin A, Jhong H-RM, Rosen BA, Zhu W, Ma S, Kenis PJA, Masel RI (2013) Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J Phys Chem C 117:1627–1632. https://doi.org/10.1021/jp310509z

    Article  CAS  Google Scholar 

  34. Rosen BA, Zhu W, Kaul G, Salehi-Khojin A, Masel RI (2013) Water enhancement of CO2 conversion on silver in 1-ethyl-3- methylimidazolium tetrafluoroborate. J Electrochem Soc 160:H138–H141. https://doi.org/10.1149/2.004303jes

    Article  CAS  Google Scholar 

  35. DiMeglio JL, Rosenthal J (2013) Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. J Am Chem Soc 135:8798–8801. https://doi.org/10.1021/ja4033549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rosen BA, Haan JL, Mukherjee P, Braunschweig B, Zhu W, Salehi-Khojin A, Dlott DD, Masel RI (2012) In situ spectroscopic examination of a low overpotential pathway for carbon dioxide conversion to carbon monoxide. J Phys Chem C 116:15307–15312. https://doi.org/10.1021/jp210542v

    Article  CAS  Google Scholar 

  37. Barber J (2008) Crystal structure of the oxygen-evolving complex of photosystem II. Inorg Chem 47:1700–1710. https://doi.org/10.1021/ic701835r

    Article  CAS  PubMed  Google Scholar 

  38. Barber J (2007) Biological solar energy. Philos Transact A Math Phys Eng Sci 365:1007–1023. https://doi.org/10.1098/rsta.2006.1962

    Article  CAS  Google Scholar 

  39. Barber J, Ferreira K, Maghlaoui K, Iwata S (2004) Structure of the oxygen evolving center of photosystem II and its mechanistic implications. Phys Chem Chem Phys 6:4737–4742. https://doi.org/10.1039/b407981g

    Article  CAS  Google Scholar 

  40. Ganesh I (2019) BMIM–BF4 mediated electrochemical CO2 reduction to CO is a reverse reaction of CO oxidation in air—experimental evidence. J Phys Chem C 123:30198–30212. https://doi.org/10.1021/acs.jpcc.9b09819

    Article  CAS  Google Scholar 

  41. Teng Y, Zhang D (2018) Long-term viability of carbon sequestration in deep-sea sediments. Sci Adv 4:eaao6588. https://doi.org/10.1126/sciadv.aao6588

  42. https://en.wikipedia.org/wiki/World_energy_consumption. (24th October 2019)

  43. Buth JM (2016) Ocean acidification: investigation and presentation of the effects of elevated carbon dioxide levels on seawater chemistry and calcareous organisms. J Chem Educ 93:718–721. https://doi.org/10.1021/acs.jchemed.5b00676

    Article  CAS  Google Scholar 

  44. Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, Kiessling W, Ries J, Zachos JC, Royer DL, Barker S, Marchitto TM Jr, Moyer R, Pelejero C, Ziveri P, Foster GL, Williams B (2012) The geological record of ocean acidification. Sci 335:1058–1063. https://doi.org/10.1126/science.1208277

    Article  CAS  Google Scholar 

  45. Couce E, Ridgwell A, Hendy EJ (2013) Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. Global Change Bio 19:3592–3606. https://doi.org/10.1111/gcb.12335

    Article  Google Scholar 

  46. Taylor LL, Quirk J, Thorley RMS, Kharecha PA, Hansen J, Ridgwell A, Lomas MR, Banwart SA, Beerling DJ (2016) Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat Clim Chang 6:402–406. https://doi.org/10.1038/nclimate2882

    Article  CAS  Google Scholar 

  47. Matter JM, Stute M, Snæbjörnsdottir SÓ, Oelkers EH, Gislason SR, Aradottir ES, Sigfusson B, Gunnarsson I, Sigurdardottir H, Gunnlaugsson E, Axelsson G, Alfredsson HA, Wolff-Boenisch D, Mesfin K, Taya DFDLR, Hall J, Dideriksen K, Broecker WS (2016) Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Sci 352:1312–1314. https://doi.org/10.1126/science.aad8132

    Article  CAS  Google Scholar 

  48. Ganesh I (2017) Nanomaterials for the conversion of carbon dioxide into renewable fuels and value‐added products. Nanotechnology for Energy Sustainability, Wiley‐VCH Verlag GmbH & Co. KGaA 1107–1138. https://doi.org/10.1002/9783527696109.ch44

  49. Sharma S, Maréchal F (2019) Carbon dioxide capture from internal combustion engine exhaust using temperature swing adsorption. Front Energy Res 7. https://doi.org/10.3389/fenrg.2019.00143

  50. Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498. https://doi.org/10.1021/jo801260f

    Article  CAS  PubMed  Google Scholar 

  51. Sandeep KC, Kamath S, Mistry K, Kumar MA, Bhattacharya SK, Bhanja K, Mohan S (2017) Experimental studies and modeling of advanced alkaline water electrolyser with porous nickel electrodes for hydrogen production. Inter J Hydrogen Energy 42:12094–12103. https://doi.org/10.1016/j.ijhydene.2017.03.154

    Article  CAS  Google Scholar 

  52. Esswein AJ, McMurdo MJ, Ross PN, Bell AT, Tilley TD (2009) Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J Phys Chem C 113:15068–15072. https://doi.org/10.1021/jp904022e

    Article  CAS  Google Scholar 

  53. Schalenbach M, Lueke W, Stolten D (2016) Hydrogen diffusivity and electrolyte permeability of the Zirfon PERL separator for alkaline water electrolysis. J Electrochem Soc 163:F1480–F1488. https://doi.org/10.1149/2.1251613jes

    Article  CAS  Google Scholar 

  54. Xu L, Li W, You Y, Zhang S, Zhao Y (2013) Polysulfone and zirconia composite separators for alkaline water electrolysis. Front Chem Sci Eng 7:154–161. https://doi.org/10.1007/s11705-013-1331-8

    Article  CAS  Google Scholar 

  55. Vermeiren P, Moreels JP, Claes A, Beckers H (2009) Electrode diaphragm electrode assembly for alkaline water electrolysers. Inter J Hydrogen Energy 34:9305–9315. https://doi.org/10.1016/j.ijhydene.2009.09.023

    Article  CAS  Google Scholar 

  56. Kerres J, Eigenberger G, Reichle S, Schramm V, Hetzel K, Schnurnberger W, Seybold I (1996) Advanced alkaline electrolysis with porous polymeric diaphragms. Desalination 104:47–57. https://doi.org/10.1016/0011-9164(96)00025-2

    Article  CAS  Google Scholar 

  57. Barber J (2006) Photosystem II: an enzyme of global significance. Biochem Soc Trans 34:619–631. https://doi.org/10.1042/BST0340619

    Article  CAS  PubMed  Google Scholar 

  58. Barber J (2003) Photosystem II: the engine of life. Q Rev Biophys 36:71–89. https://doi.org/10.1017/S0033583502003839

    Article  CAS  PubMed  Google Scholar 

  59. Ganesh I (2020) BMIM-BF4 RTIL: Synthesis, characterization and performance evaluation for electrochemical CO2 reduction to CO over Sn and MoSi2 cathodes. C — J Carbon Res 6:47. https://doi.org/10.3390/c6030047

  60. Haas T, Krause R, Weber R, Demler M, Schmid G (2018) Technical photosynthesis involving CO2 electrolysis and fermentation. Nat Catal 1:32–39. https://doi.org/10.1038/s41929-017-0005-1

  61. Banerjee A, Dick GR, Yoshino T, Kanan MW (2016) Carbon dioxide utilization via carbonate-promoted C-H carboxylation. Nat 531:215–219. https://doi.org/10.1038/nature17185

    Article  CAS  Google Scholar 

  62. Li CW, Ciston J, Kanan MW (2014) Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nat 508:504–507. https://doi.org/10.1038/nature13249

    Article  CAS  Google Scholar 

  63. Ganesh I, Kumar PP, Annapoorna I, Sumliner JM, Ramakrishna M, Hebalkar NY, Padmanabham G, Sundararajan G (2014) Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl Surf Sci 293:229–247. https://doi.org/10.1016/j.apsusc.2013.12.140

    Article  CAS  Google Scholar 

  64. Ganesh I (2017) Li2O-ZnO-Co3O4-TiO2 composite thin-film electrocatalyst for efficient water oxidation catalysis. Mater Manuf Processes 32:431–441. https://doi.org/10.1080/10426914.2016.1257857

    Article  CAS  Google Scholar 

  65. Lopez N, Graham DJ, McGuire R, Alliger GE, Shao-Horn Y, Cummins CC, Nocera DG (2012) Reversible reduction of oxygen to peroxide facilitated by molecular recognition. Sci 335:450–453. https://doi.org/10.1126/science.1212678

    Article  CAS  Google Scholar 

  66. Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Sci 334:645–648. https://doi.org/10.1126/science.1209816

    Article  CAS  Google Scholar 

  67. Ganesh I (2011) Development of β-SiAlON based ceramics for radome applications. Process Appl Ceram 5:113–138. https://doi.org/10.2298/PAC1103113G

    Article  CAS  Google Scholar 

  68. Ganesh I (2020) A device and method for converting sunlight into heat energy using semiconducting materials immersed in a stable organic solvent for electricity generation. Indian Patent Application # 202041039082 Number # TEMP/E-1/43582/2020-CHE

  69. Halmann M (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nat 275:115–116. https://doi.org/10.1038/275115a0

    Article  CAS  Google Scholar 

  70. Ganesh I (2013) Conversion of carbon dioxide into several potential chemical commodities following different pathways-a review. Mater Sci Forum 764:1–82. https://doi.org/10.4028/www.scientific.net/MSF.764.1

    Article  CAS  Google Scholar 

  71. Acién Fernández FG, González-López CV, Fernández Sevilla JM, Molina Grima E (2012) Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl Microbio Biotech 96:577–586. https://doi.org/10.1007/s00253-012-4362-z

    Article  CAS  Google Scholar 

  72. Kember MR, Knight PD, Reung PTR, Williams CK (2009) Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure. Angew Chem Int Ed 48:931–933. https://doi.org/10.1002/anie.200803896

    Article  CAS  Google Scholar 

  73. Sujith S, Min JK, Seong JE, Na SJ, Lee BY (2008) A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization. Angew Chem Int Ed Engl 47:7306–7309. https://doi.org/10.1002/anie.200801852

    Article  CAS  PubMed  Google Scholar 

  74. Darensbourg DJ (2010) Chemistry of carbon dioxide relevant to its utilization: a personal perspective. Inorg Chem 49:10765. https://doi.org/10.1021/ic101800d

    Article  CAS  PubMed  Google Scholar 

  75. Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WM, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101:953–996. https://doi.org/10.1021/cr000018s

    Article  CAS  PubMed  Google Scholar 

  76. Leng Y, Chen G, Mendoza AJ, Tighe TB, Hickner MA, Wang C-Y (2012) Solid-state water electrolysis with an alkaline membrane. J Am Chem Soc 134:9054–9057. https://doi.org/10.1021/ja302439z

    Article  CAS  PubMed  Google Scholar 

  77. Haverkort JW, Rajaei H (2021) Voltage losses in zero-gap alkaline water electrolysis. J Power Sources 497. https://doi.org/10.1016/j.jpowsour.2021.229864

  78. Monteiro MCO, Goyal A, Moerland P, Koper MTM (2021) Understanding cation trends for hydrogen evolution on platinum and gold electrodes in alkaline media. ACS Catal 11:14328–14335. https://doi.org/10.1021/acscatal.1c04268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schalenbach M, Carmo M, Fritz DL, Mergel J, Stolten D (2013) Pressurized PEM water electrolysis: efficiency and gas crossover. Inter J Hydrogen Energy 38:14921–14933. https://doi.org/10.1016/j.ijhydene.2013.09.013

    Article  CAS  Google Scholar 

  80. Schalenbach M, Tjarks G, Carmo M, Lueke W, Mueller M, Stolten D (2016) Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis. J Electrochem Soc 163:F3197–F3208. https://doi.org/10.1149/2.0271611jes

    Article  CAS  Google Scholar 

  81. Vermeiren P, Adriansens W, Moreels JP, Leysen R (1998) Evaluation of the Zirfon® separator for use in alkaline water electrolysis and Ni-H2 batteries. Inter J Hydrogen Energy 23:321–324. https://doi.org/10.1016/S0360-3199(97)00069-4

    Article  CAS  Google Scholar 

  82. Vermeiren P, Adriansens W, Leysen R (1996) Zirfon®: a new separator for Ni-H2 batteries and alkaline fuel cells. Inter J Hydrogen Energy 21:679–684. https://doi.org/10.1016/0360-3199(95)00132-8

    Article  CAS  Google Scholar 

  83. Vermeiren PH, Leysen R, Beckers H, Moreels JP, Claes A (2008) The influence of manufacturing parameters on the properties of macroporous Zirfon® separators. J Porous Mater 15:259–264. https://doi.org/10.1007/s10934-006-9084-0

    Article  CAS  Google Scholar 

  84. Bailleux C (1981) Advanced water alkaline electrolysis: a two-year running of a test plant. Inter J Hydrogen Energy 6:461–471. https://doi.org/10.1016/0360-3199(81)90078-1

    Article  CAS  Google Scholar 

  85. Faraj M, Boccia M, Miller H, Martini F, Borsacchi S, Geppi M, Pucci A (2012) New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis. Inter J Hydrogen Energy 37:14992–15002. https://doi.org/10.1016/j.ijhydene.2012.08.012

    Article  CAS  Google Scholar 

  86. Xiao L, Zhang S, Pan J, Yang C, He M, Zhuang L, Lu J (2012) First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy & Environ Sci 5:7869–7871. https://doi.org/10.1039/C2EE22146B

    Article  CAS  Google Scholar 

  87. Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membrane Sci 377:1–35. https://doi.org/10.1016/j.memsci.2011.04.043

    Article  CAS  Google Scholar 

  88. Ganesh I (2018) Surface, structural, energy band-gap, and photocatalytic features of an emulsion-derived B-doped TiO2 nano-powder. Mol Catal 451:51–65. https://doi.org/10.1016/j.mcat.2017.10.024

    Article  CAS  Google Scholar 

  89. Ganesh I (2017) Novel composites of β-SiAlON and radome manufacturing technology developed at ARCI, Hyderabad, for hypervelocity vehicles. Bull Mater Sci 40(4):719–735. https://doi.org/10.1007/s12034-017-1424-y

    Article  CAS  Google Scholar 

  90. Ganesh I (2017) Effects of phosphorus-doping on energy band-gap, structural, surface, and photocatalytic characteristics of emulsion-based sol-gel derived TiO2 nano-powder. Appl Surf Sci 414:277–291. https://doi.org/10.1016/j.apsusc.2017.04.103

    Article  CAS  Google Scholar 

  91. Doyen W, Alvarez Gallego Y (2013) Novel separator, an electrochemical cell therewith and use thereof therein, pp 31 pp., Cont.-in-part of Appl. No. PCT/EP2012/053376., Vito NV, Belg

  92. Sánchez D, Ubertini S, Muñoz de Escalona JM, Chacartegui R (2014) Potential of molten carbonate fuel cells to reduce the carbon footprint of large reciprocating engines. Inter J Hydrogen Energy 39:4081–4088. https://doi.org/10.1016/j.ijhydene.2013.04.060

    Article  CAS  Google Scholar 

  93. Ganesh I (2022) A method for the fabrication of web-reinforced EPDM rubber-ZrO2 composite membrane for separating H2 and O2 gases formed in water electrolysis reaction, Indian Patent Application # 202241028888 19 h May 2022

  94. Ganesh I (2022) A method for the fabrication of web-reinforced EPDM rubber-CaCO3 composite membrane for separating CO and O2 gases formed in electrochemical CO2 reduction reaction, Indian Patent Application # 202241028889 19 h May 2022

  95. Ganesh I (2012) Hydrolysis-induced aqueous gelcasting: the latest concept for net-shape consolidation of ceramics-a review. Mater Manufac Proc 27:233–241. https://doi.org/10.1080/10426914.2011.585494

    Article  CAS  Google Scholar 

  96. Ganesh I, Olhero SM, Araujo AB, Correia MR, Sundararajan G, Ferreira JMF (2008) Chemisorption of phosphoric acid and surface characterization of as passivated AIN powder against hydrolysis. Langmuir 24:5359–5365. https://doi.org/10.1021/la800075b

    Article  CAS  PubMed  Google Scholar 

  97. Wang W, Chen P, Chen X, Zhou H, FuX, Liu J, Liu Y, Cheng X, Song X, Zhu G (2022) An effective pre-catalytic electrode based on iron/nickel hydroxyquinoline for water oxidation. Surf Interf 33. https://doi.org/10.1016/j.surfin.2022.102153

  98. Plevová M, Hnát J, Bouzek K (2021) Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media: a comparative review. J Power Sources 507. https://doi.org/10.1016/j.jpowsour.2021.230072

  99. Guo X, Kong R-M, Zhang X, Du H, Qu F (2018) Ni(OH)2 nanoparticles embedded in conductive microrod array: an efficient and durable electrocatalyst for alkaline oxygen evolution reaction. ACS Catal 8:651–655. https://doi.org/10.1021/acscatal.7b03406

    Article  CAS  Google Scholar 

  100. Trotochaud L, Young SL, Ranney JK, Boettcher SW (2014) Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J Am Chem Soc 136:6744–6753. https://doi.org/10.1021/ja502379c

    Article  CAS  PubMed  Google Scholar 

  101. Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Comb Sci 36:307–326. https://doi.org/10.1016/j.pecs.2009.11.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to express his gratitude to all his colleagues at ARCI, Hyderabad, for their kind contributions to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibram Ganesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 41419 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, I. EPDM rubber-based membranes for electrochemical water splitting and carbon dioxide reduction reactions. J Solid State Electrochem (2023). https://doi.org/10.1007/s10008-023-05479-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-023-05479-w

Keywords

Navigation