Skip to main content

Advertisement

Log in

Toward highly active electrochemical CO2 reduction to C2H4 by copper hydroxyphosphate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrocatalytic carbon dioxide reduction reaction (CO2RR) is a promising method to deal with the greenhouse effect and the energy crisis. In a well-designed Cu-based catalyst, the unique crystal structure with active electronic properties is crucial for CO2RR. Here, a series of copper hydroxyphosphate catalysts were synthesized via one-step solvothermal process and applied in CO2RR. The concentration of hydroxide ion (OH) and ammonium ion (NH4+) plays an important role in the formation and aggregation of the crystal architectures. Compared to copper monohydroxyphosphate (Cu2(OH)PO4), copper tetrahydroxyphosphate (Cu5(OH)4(PO4)2) exhibits superior selectivity and activity for CO2RR to C2H4. The Faradaic efficiency of C2H4 was achieved over 37.4% with the outstanding stability. The unique structure and morphology characteristics endow Cu5(OH)4(PO4)2 with more hydroxyl groups (− OH) and higher catalytic area. It affords the high CO2RR performance by not only increasing the interaction between the catalysts and CO2 molecules, but also providing more active sites for CO2RR. This work provides a new perspective for the design of stable novel Cu-based catalysts with tunable chemical environment for CO2RR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li C, Zuo J, Wang Z, Zhang X (2020) J Clean Prod 264:121723

    Article  CAS  Google Scholar 

  2. Zhu DD, Liu JL, Qiao SZ (2016) Adv Mater 28:3423–3452

    Article  CAS  PubMed  Google Scholar 

  3. Ma W, Xie S, Liu T, Fan Q, Ye J, Sun F, Jiang Z, Zhang Q, Cheng J, Wang Y (2020) Nat Catal 3:478–487

    Article  CAS  Google Scholar 

  4. Chen H, Wang Z, Wei X, Liu S, Guo P, Han P, Wang H, Zhang J, Lu X, Wei B (2021) Appl Surf Sci 544:148965

    Article  CAS  Google Scholar 

  5. Qiu XF, Zhu HL, Huang JR, Liao PQ, Chen XM (2021) J Am Chem Soc 143:7242–7246

    Article  CAS  PubMed  Google Scholar 

  6. Ren T, Patel M, Blok K (2006) Energy 31:425–451

    Article  CAS  Google Scholar 

  7. Chen G, Chen X, Pan Y, Ji Y, Liu G, Jin W (2021) J Membrane Sci 620:118852

    Article  CAS  Google Scholar 

  8. Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I (2019) Chem Rev 119:7610–7672

    Article  CAS  PubMed  Google Scholar 

  9. Nam DH, Shekhah O, Ozden A, McCallum C, Li F, Wang X, Lum Y, Lee T, Li J, Wicks J, Johnston A, Sinton D, Eddaoudi M, Sargent EH (2022) Adv Mater 34:2207088

  10. Lu Q, Jiao F (2016) Nano Energy 29:439–456

    Article  CAS  Google Scholar 

  11. Zhang F, Wang P, Zhao R, Wang Y, Wang J, Han B, Liu Z (2022) Chemsuschem 15:e202201267

    CAS  PubMed  Google Scholar 

  12. Sang J, Wei P, Liu T, Lv H, Ni X, Gao D, Zhang J, Li H, Zang Y, Yang F, Liu Z, Wang G, Bao X (2022) Angew 134:e202114238

    Article  Google Scholar 

  13. Mu S, Lu H, Wu Q, Lei Li, Zhao R, Long C, Cui C (2022) Nat Commun 13:3694

  14. Lei Q, Zhu H, Song K, Wei N, Liu L, Zhang D, Yin J, Dong X, Yao K, Wang N, Li X, Davaasuren B, Wang J, Han Y (2020) J Am Chem Soc 142:4213–4222

    Article  CAS  PubMed  Google Scholar 

  15. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) Energy Environ Sci 3:1311–1315

    Article  CAS  Google Scholar 

  16. Montoya JH, Peterson AA, Nørskov JK (2013) Chem Cat Chem 5:737–742

    CAS  Google Scholar 

  17. Monsef R, Salavati-Niasari M (2021) Biosens Bioelectron 178:113017

    Article  CAS  PubMed  Google Scholar 

  18. Gholami T, Salavati-Niasari M, Varshoy S (2017) Int J Hydrogen Energ 42:5235–5245

    Article  CAS  Google Scholar 

  19. Salavati-Niasari M, Shaterian M, Ganjali MR (2007) J Mol Catal A Chem 261:147–155

    Article  CAS  Google Scholar 

  20. Salavati-Niasari M, Farzaneh F, Ghandi M (2002) J Mol Catal A Chem 186:101–107

    Article  CAS  Google Scholar 

  21. Salavati-Niasari M, Banitaba SH (2003) J Mol Catal A Chem 201:43–54

    Article  CAS  Google Scholar 

  22. Salavati-Niasari M (2006) J Mol Catal A Chem 245:192–199

    Article  CAS  Google Scholar 

  23. Salavati-Niasari M (2005) Chem Lett 34:1444–1445

    Article  CAS  Google Scholar 

  24. Li M, Cheng Q, Wittman RM, Peng X, Chan CK (2014) ChemElectroChem 1:663–672

    Article  Google Scholar 

  25. Berry LG (1950) Am Mineral 35:365–385

    CAS  Google Scholar 

  26. Meng X, Lin K, Yang X, Sun Z, Jiang D, Xiao FS (2003) J Catal 218:460–464

    Article  CAS  Google Scholar 

  27. Beshkar F, Salavati-Niasari M, Amiri O (2021) Ind Eng Chem Res 60:9578–9591

    Article  CAS  Google Scholar 

  28. Yang S, Xu K, Wang H, Yu H, Zhang S, Peng F (2016) Mater Design 100:30–36

    Article  CAS  Google Scholar 

  29. Liu G, Zhou Y, Teng J, Zhang J, You S (2018) Chemosphere 201:197–205

    Article  CAS  PubMed  Google Scholar 

  30. Zhan Y, Li H, Chen Y (2021) J Hazard Mater 180:481–485

    Article  Google Scholar 

  31. Krivovichev SV, Zolotarev AA, Popova VI (2016) Struct Chem 27:1715–1723

    Article  CAS  Google Scholar 

  32. He M, Li C, Zhang H, Chang X, Chen JG, Goddard WA, Cheng M, Xu B, Lu Q (2020) Nat Commun 11:1–10

    Article  Google Scholar 

  33. Cho IS, Kim DW, Lee S, Kwak CH, Bae ST, Noh JH, Yoon SH, Jung HS, Kim DW, Hong KS (2008) Adv Funct Mater 18:2154–2162

    Article  CAS  Google Scholar 

  34. Bu W, Xu Y, Zhang N, Chen H, Hua Z, Shi J (2007) Langmuir 23:9002–9007

    Article  CAS  PubMed  Google Scholar 

  35. Seredych M, László K, Rodríguez-Castellón E, Bandosz TJ (2016) J Energy Chem 25:236–245

    Article  Google Scholar 

  36. Asadi M, Kim K, Liu C (2016) AV Addepalli, P Abbasi, P Yasaei, P Phillips, A Behranginia, JM Cerrato, R Haasch, P Zapol, B Kumar, RF Klie, J Ablade, LA Curtiss, A Salehi-Khojin. Science 353:467–470

    Article  CAS  PubMed  Google Scholar 

  37. RodrIguez-Clemente R, Serna CJ, Ocaña M, Matijevié E (1994) J Cryst Growth 143:277–286

    Article  CAS  Google Scholar 

  38. Kharbish S, Andráš P, Luptáková J, Milovská S (2014) Acta A Mol Biomol Spectrosc 130:152–163

    Article  CAS  Google Scholar 

  39. Huminicki DMC, Hawthorne FC (2002) Rev Mineral Geochem 48:123–253

    Article  CAS  Google Scholar 

  40. Buttersack C (2019) Phys Chem Chem Phys 21:5614–5626

    Article  CAS  PubMed  Google Scholar 

  41. Li Z, Yang Y, Yin Z, Wei X, Peng H, Lyu K, Wei F, Xiao L, Wang G, Abruña HD, Lu J, Zhuang L (2021) ACS Catal 11:2473–2482

    Article  Google Scholar 

  42. Rahimi MG, Wang A, Ma G, Han N, Chen Y (2020) RSC Adv 10:40916–40922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Swaidan A, Barras A, Addad A, Tahon JF, Toufaily J, Hamieh T, Szunerits S, Boukherroub R (2021) J Colloid Inter Sci 582:732–740

    Article  CAS  Google Scholar 

  44. Xiao S, Zhang Y, Gao P, Zhong L, Li X, Zhang Z, Wang H, Wei W, Sun Y (2017) Catal Today 281:327–336

    Article  CAS  Google Scholar 

  45. Traiwatcharanon P, Siriwatcharapiboon W, Jongprateep O, Wongchoosuk C (2022) RSC Adv 12:16079–16092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu H, Cao S, Zhang J, Liu S, Chen C, Zhang Y, Wei S, Wang Z, Lu X (2021) Mater Today Phys 20:100448

    Article  CAS  Google Scholar 

  47. Li F, Zhong H, Zhao G, Wang S, Liu G (2016) Colloids Surf 490:67–73

    Article  CAS  Google Scholar 

  48. Phillips DC, Sawhill SJ, Self R, Bussell ME (2002) J Catal 207:266–273

    Article  CAS  Google Scholar 

  49. Xiong L, Bi J, Wang L, Yang S (2018) Int J Hydrogen Energy 43:20372–20381

    Article  CAS  Google Scholar 

  50. Frost RL, Williams PA, Martens W, Kloprogge JT, Leverett P (2002) J Raman Spectrosc 33:260–263

    Article  CAS  Google Scholar 

  51. McAfee L (2000) J Chem Educ 77:1122

    Article  CAS  Google Scholar 

  52. Baril M, Assaaoudi H, Butler IS (2005) J Mol Struct 751:168–171

    Article  CAS  Google Scholar 

  53. Shao H, Padmanathan N, McNulty D (2016) O′Dwyer C, Razeeb KM. ACS Appl Mater Inter 8:28592–28598

    Article  CAS  Google Scholar 

  54. Chapman AC, Thirlwell LE (1964) Spectrochim Acta 20:937–947

    Article  CAS  Google Scholar 

  55. Chen H, Wang Z, Cao S, Liu S, Lin X, Zhang Y, Shang Y, Zhu Q, Wei S, Wei B, Sun D, Lu X (2021) J Mater Chem A 9:23234–23242

    Article  CAS  Google Scholar 

  56. Tan D, Zhang J, Cheng X, Tan Xi, Shi J, Zhang B, Han B, Zheng L, Zhang (2019) J Chem Sci 10:4491–4496

    CAS  Google Scholar 

  57. Li X, Bi W, Chen M, Sun Y, Ju H, Yan W, Zhu J, Wu X, Chu W, Wu C, Xie Y (2017) J Am Chem Soc 139:14889–14892

    Article  CAS  PubMed  Google Scholar 

  58. Deng W, Zhang L, Li L, Chen S, Hu C, Zhao ZJ, Wang T, Gong J (2019) J Am Chem Soc 141:2911–2915

    Article  CAS  PubMed  Google Scholar 

  59. Li L, Dai X, Chen DL, Zeng Y, Hu Y (2022) Angew Chem Int Edit 61:e202205839

    CAS  Google Scholar 

  60. Wang H, Yang D, Yang J, Ma X, Li H, Dong W, Zhang R, Feng C (2021) Chem Cat Chem 13:2570–2576

    Google Scholar 

Download references

Funding

This work was supported by The National Natural Science Foundation of China (22101300), Shandong Natural Science Foundation, China (ZR2020ME053, ZR2020QB027 and ZR2022ME105), State Key Laboratory of Enhanced Oil Recovery of Open Fund Funded Project (2022-KFKT-28), Major Special Projects of CNPC (2021ZZ01-05), the Fundamental Research Funds for the Central Universities (22CX03010A, 20CX06007A and 22CX01002A-1), the Entrepreneurship Practice Project of China University of Petroleum (202203007), and the Postgraduate Innovation Project of China University of Petroleum (YCX2021105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuxian Wei or Xiaoqing Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5667 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Shang, Y., Chen, H. et al. Toward highly active electrochemical CO2 reduction to C2H4 by copper hydroxyphosphate. J Solid State Electrochem 27, 1279–1287 (2023). https://doi.org/10.1007/s10008-023-05465-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05465-2

Keywords

Navigation