Skip to main content

Advertisement

Log in

High-conducting, economical, and flexible polymer-in-salt electrolytes (PISEs) suitable for energy devices: a reality due to glutaraldehyde crosslinked starch as host

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the 1990s, polymer-in-salt electrolytes (PISEs) came into the picture with the hope to overcome the problem of slow ion motion and low cation transference number in salt-in-polymer-electrolytes (SIPEs). The present paper reports an electrolyte membrane in the PISE range using renewable polymer (rice starch), synthesized using a simple solution cast technique having high moisture content (~ 12%). The synthesized flexible PISE membrane has high conductivity (~ 10−2 S/cm) and fast ion transport (relaxation time ~ µs). Conductivity is almost independent of relative humidity indicating the water molecules available in the matrix are involved in the lattice formation and the matrix is stable. X-ray diffraction (XRD) analysis and optical photographs have confirmed that the crosslinked starch matrix accepts a large amount of salt, and even at 300 wt% of salt (i.e., at 3:1 salt: starch ratio), morphology remains homogenous, and no signature of salt is present in XRD spectra. The electrochemical stability window (ESW ~ 2.7 V) is also wide enough for energy device fabrication. To check its potential for supercapacitor application, the two most simple electrodes (anodized Al and carbon cloths) were selected. The approximate rectangular shape of cyclic voltammetry (CV) performed at different scan rates from 5 to 500 V/s, indicated the EDLC-type charge storage phenomenon in the studied voltage ranges. For scan rate above 300 V/s, the capacitance value is almost independent of scan rate. All these indicate that crosslinked starch-based PISEs are a successful step towards the target for possibilities of commercial application of polymer-in-salt electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen Z, Gu X, Guo Y, Wang X, Shao M, Dong B, Kang Z (2021) A carbon dot-based total green and self-recoverable solid-state electrochemical cell fully utilizing O2/H2O redox couple. Sus Mat 1(3):448–457. https://doi.org/10.1002/sus2.23

    Article  CAS  Google Scholar 

  2. Luo X, Chen S, Hu T, Chen Y, Li F (2021) Renewable biomass-derived carbons for electrochemical capacitor applications. Sus Mat 1(2):211–240. https://doi.org/10.1002/sus2.8

    Article  CAS  Google Scholar 

  3. Alipoori S, Mazinani S, Aboutalebi SH, Sharif F (2020) Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J Energy Storage 1(27):1–23. https://doi.org/10.1016/j.est.2019.101072

    Article  Google Scholar 

  4. Tan SJ, Zeng XX, Ma Q, Wu XW, Guo YG (2018) Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem Energy Rev 1(2):113–138. https://doi.org/10.1007/s41918-018-0011-2

    Article  CAS  Google Scholar 

  5. Wu Y, Li Y, Wang Y, Liu Q, Chen Q, Chen M (2022) Advances and prospects of PVDF based polymer electrolytes. J Energy Chem 1(64):62–84. https://doi.org/10.1016/j.jechem.2021.04.007

    Article  CAS  Google Scholar 

  6. Elwan HA, Thimmappa R, Mamlouk M, Scott K (2021) Applications of poly ionic liquids in proton exchange membrane fuel cells: a review. J Power Sources 510:230371. https://doi.org/10.1016/j.jpowsour.2021.230371

  7. Ye F, Liao K, Ran R, Shao Z (2020) Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: a review. Energy Fuels 34(8):9189–9207. https://doi.org/10.1021/acs.energyfuels.0c02111

    Article  CAS  Google Scholar 

  8. Zhu J, Zhang Z, Zhao S, Westover AS, Belharouak I, Cao PF (2021) Single-ion conducting polymer electrolytes for solid-state lithium–metal batteries: design, performance, and challenges. Adv Energy Mater 11(14):2003836. https://doi.org/10.1002/aenm.202003836

    Article  CAS  Google Scholar 

  9. Noda A, Watanabe M (2000) Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts Electrochim Acta 45(8–9):1265–1270. https://doi.org/10.1016/S0013-4686(99)00330-8

    Article  CAS  Google Scholar 

  10. Angell CA, Liu C, Sanchez E (1993) Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 362(6416):137–139. https://doi.org/10.1038/362137a0

    Article  CAS  Google Scholar 

  11. Wang Z, Gao W, Chen L, Mo Y, Huang X (2002) Study on roles of polyacrylonitrile in “salt-in-polymer” and “polymer-in-salt” electrolytes. Solid State Ionics 154(2):51–56. https://doi.org/10.1016/S0167-2738(02)00463-0

    Article  Google Scholar 

  12. Mishra R, Baskaran N, Ramakrishnan PA, Rao KJ (1998) Lithium ion conduction in extreme polymer in salt regime. Solid State Ionics 112(3–4):261–273. https://doi.org/10.1016/s0167-2738(98)00209-4

    Article  CAS  Google Scholar 

  13. Forsyth M, Sun J, Macfarlane DR, Hill AJ (2000) Compositional dependence of free volume in PAN/ LiCF3SO3 polymer-in-salt electrolytes and the effect on ionic conductivity. J Polym Sci, Part B: Polym Phys 38(2):341–350. https://doi.org/10.1002/(SICI)1099-0488(20000115)38:2%3c341::AID-POLB6%3e3.0.CO;2-S

    Article  CAS  Google Scholar 

  14. Khan Z, Ail U, Nadia Ajjan F, Phopase J, Ullah Khan Z, Kim N, Nilsson J, Inganäs O, Berggren M, Crispin X (2022) Water-in-polymer salt electrolyte for slow self-discharge in organic batteries. Adv Energy Sustainability Res 3(1):2100165. https://doi.org/10.1002/aesr.202100165

    Article  CAS  Google Scholar 

  15. Yadav M, Nautiyal G, Verma A, Kumar M, Tiwari T, Srivastava N (2019) Electrochemical characterization of NaClO4–mixed rice starch as a cost-effective and environment-friendly electrolyte. Ionics 25(6):2693–2700. https://doi.org/10.1007/s11581-018-2794-x

    Article  CAS  Google Scholar 

  16. Moreau L, Bindzus W, Hill S (2011) Influence of salts on starch degradation: Part I–sodium chloride. Starch-Stärke 63(11):669–675. https://doi.org/10.1002/star.201100031

    Article  CAS  Google Scholar 

  17. Ismail H, Irani M, Ahmad Z (2013) Utilization of waste polystyrene and starch for superabsorbent composite preparation. J Appl Polym Sci 127(6):4195–4202. https://doi.org/10.1002/app.37952

    Article  CAS  Google Scholar 

  18. Tiwari T, Pandey K, Srivastava N, Srivastava PC (2011) Effect of glutaraldehyde on electrical properties of arrowroot starch+ NaI electrolyte system. J Appl Polym Sci 121(1):1–7. https://doi.org/10.1002/app.33559

    Article  CAS  Google Scholar 

  19. Ferreira-Villadiego J, Garcia-Echeverri J, Mejia MV, Pasqualino J, Meza-Catellar P, Lambis H (2018) Chemical modification and characterization of starch derived from plantain (Musa paradisiaca) Peel waste, as a source of biodegradable material. Chem Engineer Trans 1(65):763–768. https://doi.org/10.3303/CET1865128

    Article  Google Scholar 

  20. Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch–chitosan blend biodegradable film. LWT-Food Sci Technol 41(9):1633–1641. https://doi.org/10.1016/j.lwt.2007.10.014

    Article  CAS  Google Scholar 

  21. AMCO Polymers, Molecular Weight and The Effects on Polymer Properties | Amco Polymers, AMCO Polym. Artic. (2018). https://www.amcopolymers.com/resources/blog/molecular-weight-and-its-effects-on-polymer-properties.

  22. Liu X, Wang Y, Yu L, Tong Z, Chen L, Liu H, Li X (2013) Thermal degradation and stability of starch under different processing conditions. Starch-Stärke 65(1–2):48–60. https://doi.org/10.1002/star.201200198

    Article  CAS  Google Scholar 

  23. Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog polym Sci 34(12):1348–1368. https://doi.org/10.1016/j.progpolymsci.2009.07.001

    Article  CAS  Google Scholar 

  24. Mano JF, Koniarova D, Reis RL (2003) Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci- Mater Med 14(2):127–135. https://doi.org/10.1023/A:1022015712170

    Article  CAS  PubMed  Google Scholar 

  25. Aggarwal P, Dollimore D. The effect of chemical modification on starch studied using thermal analysis. Thermochim Acta 324(1–2):1–8. https://doi.org/10.1016/s0040-6031(98)00517-6.

  26. Liu X, Yu L, Liu H, Chen L, Li L (2008) In situ thermal decomposition of starch with constant moisture in a sealed system. Polym Degrad Stab 93(1):260–262. https://doi.org/10.1016/j.polymdegradstab.2007.09.004

    Article  CAS  Google Scholar 

  27. Tiwari T, Kumar M, Srivastava N, Srivastava PC (2014) Electrical transport study of potato starch-based electrolyte system-II. Mater Sci Eng B 1(182):6–13. https://doi.org/10.1016/j.mseb.2013.11.010

    Article  CAS  Google Scholar 

  28. Macdonald JR, Barsoukov E (2018) Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons, USA. https://doi.org/10.1002/9781119381860

    Article  Google Scholar 

  29. Ates M (2011) Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Prog Org Coat 71(1):1–10. https://doi.org/10.1016/j.porgcoat.2010.12.011

    Article  CAS  Google Scholar 

  30. Huang VM, Wu SL, Orazem ME, Pébère N, Tribollet B, Vivier V (2011) Local electrochemical impedance spectroscopy: a review and some recent developments. Electrochim Acta 56(23):8048–8057. https://doi.org/10.1016/j.electacta.2011.03.018

    Article  CAS  Google Scholar 

  31. Kumar M, Tiwari T, Chauhan JK, Srivastava N (2014) Understanding the ion dynamics and relaxation behavior from impedance spectroscopy of NaI doped Zwitterionic polymer system. Mater Res Express 1(4):045003. https://doi.org/10.1088/2053-1591/1/4/045003.

  32. Liu W, Yan X, Chen J, Feng Y, Xue Q (2013) Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale 5(13):6053–6062. https://doi.org/10.1039/c3nr01139a

    Article  CAS  PubMed  Google Scholar 

  33. Sheng K, Sun Y, Li C, Yuan W, Shi G (2012) Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci Rep 2(1):1–5. https://doi.org/10.1038/srep00247

    Article  CAS  Google Scholar 

  34. Yadav M, Kumar M, Tiwari T, Srivastava N (2017) Wheat starch+ NaI: a high conducting environment friendly electrolyte system for energy devices. Ionics 23(10):2871–2880. https://doi.org/10.1007/s11581-016-1930-8

    Article  CAS  Google Scholar 

  35. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150(3):A292–A300. https://doi.org/10.1149/1.1543948

    Article  CAS  Google Scholar 

  36. Mathew A, Lacey MJ, Brandell D (2021) Investigating oxidative stability of lithium-ion battery electrolytes using synthetic charge-discharge profile voltammetry. J Power Sources Adv 1(11):100071. https://doi.org/10.1016/j.powera.2021.100071.

  37. Nath AK, Kumar A (2014) Scaling of AC conductivity, electrochemical and thermal properties of ionic liquid based polymer nanocomposite electrolytes. Electrochim Acta 20(129):177–186. https://doi.org/10.1016/j.electacta.2014.02.101

    Article  CAS  Google Scholar 

  38. Liew CW, Ramesh S (2014) Comparing triflate and hexafluorophosphate anions of ionic liquids in polymer electrolytes for supercapacitor applications. Materials 7(5):4019–4033. https://doi.org/10.3390/ma7054019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tien CP, Liang WJ, Kuo PL, Teng HS (2008) Electric double layer capacitors with gelled polymer electrolytes based on poly (ethylene oxide) cured with poly (propylene oxide) diamines. Electrochim Acta 53(13):4505–4511. https://doi.org/10.1016/j.electacta.2008.01.021

    Article  CAS  Google Scholar 

  40. Ganesh B, Kalpana D, Renganathan NG (2008) Acrylamide based proton conducting polymer gel electrolyte for electric double layer capacitors. Ionics 14(4):339–343. https://doi.org/10.1007/s11581-008-0230-3

    Article  CAS  Google Scholar 

  41. Kötz R, Carlen MJ (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15–16):2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6

    Article  Google Scholar 

  42. Hsieh CT, Teng H (2002) Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40(5):667–674. https://doi.org/10.1016/S0008-6223(01)00182-8

    Article  CAS  Google Scholar 

  43. Bhoyate S, Ranaweera CK, Zhang C, Morey T, Hyatt M, Kahol PK, Ghimire M, Mishra SR, Gupta RK (2017) Eco-friendly and high performance supercapacitors for elevated temperature applications using recycled tea leaves. Global Chall 1(8):1700063. https://doi.org/10.1002/gch2.201700063

    Article  Google Scholar 

  44. Patil DS, Pawar SA, Devan RS, Gang MG, Ma YR, Kim JH, Patil PS (2013) Electrochemical supercapacitor electrode material based on polyacrylic acid/polypyrrole/silver composite. Electrochim Acta 30(105):569–577. https://doi.org/10.1016/j.electacta.2013.05.022

    Article  CAS  Google Scholar 

  45. Lust E, Jänes A, Arulepp M (2004) Influence of solvent nature on the electrochemical parameters of electrical double layer capacitors. J Electroanal Chem 562(1):33–42. https://doi.org/10.1016/j.jelechem.2003.07.034

    Article  CAS  Google Scholar 

  46. Sun K, Feng E, Peng H, Ma G, Wu Y, Wang H, Lei Z (2015) A simple and high-performance supercapacitor based on nitrogen-doped porous carbon in redox-mediated sodium molybdate electrolyte. Electrochim Acta 158:361–367. https://doi.org/10.1016/j.electacta.2015.01.185

    Article  CAS  Google Scholar 

  47. Laheäär A, Jänes A, Lust E (2012) NaClO4 and NaPF6 as potential non-aqueous electrolyte salts for electrical double layer capacitor application. Electrochim Acta 1(82):309–313. https://doi.org/10.1016/j.electacta.2012.04.149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Two of the authors (NS and MY) are thankful to University Grant Commission (New Delhi) for supporting the project entitled “Synthesis & Electrical Characterization of Starch based Electrolyte Systems” through project sanction no 42-814/2013 (SR) dated 22.03.2016. Author MY is also thankful to the Council of Scientific and Industrial Research (CSIR) for providing a fellowship. Prof. S. B. Rai and Prof. R.K. Singh of the Department of Physics, BHU, are thankfully acknowledged for providing infrared spectroscopy and TGA facility respectively. One of the authors (NS) is thankful to BHU for providing an incentive grant to senior faculties under IoE (year 2021–2022).

Author information

Authors and Affiliations

Authors

Contributions

All the authors commented on the results, provided ideas for the study, and reviewed the manuscript.

Corresponding author

Correspondence to Neelam Srivastava.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Kumar, M. & Srivastava, N. High-conducting, economical, and flexible polymer-in-salt electrolytes (PISEs) suitable for energy devices: a reality due to glutaraldehyde crosslinked starch as host. J Solid State Electrochem 27, 1213–1226 (2023). https://doi.org/10.1007/s10008-023-05421-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05421-0

Keywords

Navigation