Skip to main content

Advertisement

Log in

Stainless steel supported NiS/CeS nanocomposite for significantly enhanced oxygen evolution reaction in alkaline media

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The discovery of highly active and cost-effective materials capable of catalyzing the oxygen evolution reaction (OER) is essential for water splitting. In the present study, we developed a new method for producing the structural components of advanced non-precious metal electrocatalysts NiS/CeS nanocomposite supported on stainless steel strip (SSS) represented as NiS/CeS/SSS that are both innovative and practical. To accomplish a current density of 10 mA cm−2, the NiS/CeS/SSS requires OER overpotential of 289 mV, which is smaller than the pure NiS/SSS (319 mV) and CeS/SSS (309 mV), and with enhanced stability of 40 h tested in 1.0 M KOH electrolyte. The higher efficiency of OER is due to the strong electrical contacts between NiS/SSS and CeS/SSS, the availability of active centers, and also the lower charge transfer resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gansukh Z (2021) Mongol dream beyond fossil fuels: prosperity of greenification. Renew Energy 171:95–102

    Article  Google Scholar 

  2. Baum CM, Low S, Sovacool BK (2022) Between the sun and us: expert perceptions on the innovation, policy, and deep uncertainties of space-based solar geoengineering. Renew Sustain Energ Rev 158:112179

    Article  Google Scholar 

  3. Holden E, Linnerud K, Rygg BJ (2021) A review of dominant sustainable energy narratives. Renew Sustain Energ Rev 144:110955

    Article  Google Scholar 

  4. Chen Z, Wei W, Ni BJ (2021) Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: recent advances. Curr Opin in Green Sustain Chem 27:100398

    Article  CAS  Google Scholar 

  5. Upadhyay SN, Pakhira S (2022) Electrochemical water splitting: H2 evolution reaction. Photoelectrochem Hydrog Gen 59–89

  6. Li X, Zhao L, Yu J, Liu X, Zhang X, Liu H, Zhou W (2020) Water splitting: from electrode to green energy system. Nano-Micro Letters 12(1):1–29

    Google Scholar 

  7. Qadir SA, Al-Motairi H, Tahir F, Al-Fagih L (2021) Incentives and strategies for financing the renewable energy transition: a review. Energy Rep 7:3590–3606

    Article  Google Scholar 

  8. Al-Madanat O, Curti M, Gunnemann C, AlSalka Y, Dillert R, Bahnemann DW (2021) TiO2 photocatalysis: impact of the platinum loading method on reductive and oxidative half-reactions. Catal 380:3–15

    CAS  Google Scholar 

  9. Hojamberdiev M, Vargas R, Kadirova ZC, Kato K, Sena H, Krasnov AG, Yamakata A, Teshima K, Lerch M (2022) Unfolding the role of B site-selective doping of aliovalent cations on enhancing sacrificial visible light-induced photocatalytic H2 and O2 evolution over BaTaO2N. ACS Catal 12:1403–1414

    Article  CAS  Google Scholar 

  10. Zhao L, Yu G, Huang X, Chen W (2022) Realizing efficient catalytic performance and high selectivity for oxygen reduction reaction on a 2D Ni2SbTe2 monolayer. Inorg 61:2284–2291

    Article  CAS  Google Scholar 

  11. Wang J, Hu H, Lu S, Hu J, Zhu H, Duan F, Du M (2022) Conductive metal and covalent organic frameworks for electrocatalysis: design principles, recent progress, and perspective. Nanoscale 14:277–288

    Article  CAS  PubMed  Google Scholar 

  12. Kou T, Wang S, Li Y (2021) Perspective on high-rate alkaline water splitting. ACS Mater Lett 3:224–234

    Article  CAS  Google Scholar 

  13. Yao D, Gu L, Zuo B, Weng S, Deng S, Hao W (2021) A strategy for preparing high-efficiency and economic catalytic electrodes toward overall water splitting. Nanoscale 13:10624–10648

    Article  CAS  PubMed  Google Scholar 

  14. Wang W, Wang W, Ren X, Liu X, Li Z (2021) Synthesis of Ni3S4/NiS2/FeS2 nanoparticles for hydrogen and oxygen evolution reaction. Appl surf Sci 560:149985

    Article  CAS  Google Scholar 

  15. Wang W, Xu Y, Yao J, Liu X, Yen Z, Li Z (2020) Enhanced oxygen and hydrogen evolution performance by carbon-coated CoS 2–FeS 2 nanosheets. Dalton trans 49:13352–13358

    Article  CAS  PubMed  Google Scholar 

  16. Li J (2022) Oxygen Evolution Reaction in Energy Conversion and Storage: Design Strategies Under and Beyond the Energy Scaling Relationship. Nano-Micro Letters 14(1):1–32

  17. Arunachalam P, Senthil C, Elumalai G (2022) Nanostructured non-oxide nanomaterials an introduction, in Oxide Free Nanomaterials for Energy Storage and Conversion Applications. Elsevier 1–24

  18. Kao WC, Northumberland COP, Cheng TC, Ortiz J, Durand A, Loeffelholz OV, Schilling O, Biniossek ML, Klaholz BP, Hunte C (2022) Structural basis for safe and efficient energy conversion in a respiratory supercomplex. Nat Commun 13:1–12

    Article  CAS  Google Scholar 

  19. Novoselova A, Smolenski V, Volkovich VA, Ryzhov AA, Yan Y, Xue Y, Ma F (2022) Electrode processes and electrochemical formation of Dy-Ga and Dy-Cd alloys in molten LiCl–KCl–CsCl eutectic. J Electroanal Chem 906:116012

    Article  CAS  Google Scholar 

  20. Mohideen MM, Radhamani AV, Ramakrishna S, Wei Y, Liu Y (2022) Recent insights on iron-based nanostructured electrocatalyst and the current proton exchange membrane fuel cell status for sustainable transport. J Energy Chem In Press

  21. Li Q, Wang YW, Zeng J, Zhao X, Chen C, Wu QM, Chen LM, Chen ZY, Lei YP (2021) Bimetallic chalcogenides for electrocatalytic CO2 reduction. Rare Met 40:3442–3453

    Article  CAS  Google Scholar 

  22. Sajjad M, Amin M, Javed MS, Imran M, Hu W, Mao Z, Lu W (2021) Recent trends in transition metal diselenides (XSe2: X= Ni, Mn, Co) and their composites for high energy faradic supercapacitors. J Energy Storage 43:103176

    Article  Google Scholar 

  23. Pham DT, Quan T, Mei S, Lu Y (2022) Colloidal metal sulfide nanoparticles for high-performance electrochemical energy storage systems. Curr Opin in Green Sustain Chem 34:100596

    Article  CAS  Google Scholar 

  24. Hussain I, Sahoo S, Lamiel C, Nguyen TT, Ahmed M, Xi C, Iqbal S, Ali A, Abbas A, Javed MS, Zhang K (2022) Research progress, and future aspects: metal selenides as effective electrodes. Energy Storage Mat 47:13–43

    Article  Google Scholar 

  25. Iqbal MZ, Aziz U (2022) Supercapattery: merging of battery-supercapacitor electrodes for hybrid energy storage devices. J Energy Storage 46:103823

    Article  Google Scholar 

  26. Shaikh NS, Ubale SB, Mane VJ, Shaikh JS, Lokhande VC, praserthdam S, Lokhande CD, Kanjanaboos P (2022) Novel electrodes for supercapacitor: conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. J Alloys Compd 893:161998

    Article  CAS  Google Scholar 

  27. Şenocak A, Korkmaz E, Khataee A, Demirbas E (2022) A facile and synergetic strategy for electrochemical sensing of rutin antioxidant by Ce–Cr doped magnetite@ rGO. Mater Chem Phys 275:125298

    Article  CAS  Google Scholar 

  28. Shen M, Ai F, Ma H, Xu H, Zhang Y (2021) Progress and prospects of reversible solid oxide fuel cell materials. IScience 24:103464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sajjad M, Khan MI, Cheng f, Lu W (2021) A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors. J Energy Storage 40:102729

    Article  Google Scholar 

  30. Majumdar D, Ghosh S (2021) Recent advancements of copper oxide-based nanomaterials for supercapacitor applications. J Energy Storage 34:101995

    Article  Google Scholar 

  31. Khan I, Baig N, Ali S, Usman M, Khan SA, Saeed K (2021) Progress in the layered cathode and anode nanoarchitectures for charge storage devices: challenges and future perspective. Energy Storage Mater 35:443–469

    Article  Google Scholar 

  32. Nikodimos Y, Huang CJ, Taklu BW, Su WN, Hwang BJ (2022) Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy Environ Sci In Press

  33. Pramitha A, Raviprakash Y (2022) Recent developments and viable approaches for high-performance supercapacitors using transition metal-based electrode materials. J Energy Storage 49:104120

    Article  Google Scholar 

  34. Zhang Y, Chao S, Wang X, Han H, Bai Z, yang L (2017) Hierarchical Co9S8 hollow microspheres as multifunctional electrocatalysts for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Electrochim Acta 246:380–390

    Article  CAS  Google Scholar 

  35. Qi Y, Wu J, Xu J, Gao H, Du Z, Liu B, Liu L, Xiong D (2020) One-step fabrication of a self-supported Co@ CoTe 2 electrocatalyst for efficient and durable oxygen evolution reactions. Inorg Chem Front 7:2523–2532

    Article  CAS  Google Scholar 

  36. Sun Y, Zhang T, Li C, Xu K, Li Y (2020) Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. J Mater Chem A 8:13415–13436

    Article  CAS  Google Scholar 

  37. Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Zhauang X, Feng X (2016) Interface engineering of MoS 2/Ni 3 S 2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew Chem Int Ed 55:6702–6707

    Article  CAS  Google Scholar 

  38. Gong Y, Lin Y, Yang Z, Jiao F, Li J, Wang W (2019) High-performance bifunctional flower-like Mn-doped Cu7. 2S4@ NiS2@ NiS/NF catalyst for overall water splitting. Appl Surf Sci 476:840–849

    Article  CAS  Google Scholar 

  39. Srinivas K, Chen Y, Wang X, Wang B, Karpuraranjith M, Wang W, Su Z, Zhang W, Yang D (2021) Constructing Ni/NiS heteronanoparticle-embedded metal-organic framework-derived nanosheets for enhanced water-splitting catalysis. ACS Sustain Chem Eng 4:1920–1931

    Article  CAS  Google Scholar 

  40. Wang N, Wang J, Liu M, Ge C, Hou B, Liu N, Ning Y, Hu Y (2021) Preparation of FeS2/TiO2 nanocomposite films and study on the performance of photoelectrochemistry cathodic protection. Sci Rep 11:1–12

    CAS  Google Scholar 

  41. Zhang L, Zhao H, Xu S, Liu Q, Li T, Luo Y, Gao S, Shi X, Asiri MA, Sun X (2021) Recent advances in 1D electrospun nanocatalysts for electrochemical water splitting. Small Structures 2:2000048

    Article  CAS  Google Scholar 

  42. Nakayasu Y, Kobayashi H, Katahira S, Tomai T, Honma I (2022) Rapid, one-step fabrication of MoS2 electrocatalysts by hydrothermal electrodeposition. Electrochem Commun 134:107180

    Article  CAS  Google Scholar 

  43. Jing Z, Zhao Q, Zheng D, Sun L, Geng J, Zhou Q, Lin J (2020) Nickel-doped pyrrhotite iron sulfide nanosheets as a highly efficient electrocatalyst for water splitting. J Mater Chem A 8:20323–20330

    Article  CAS  Google Scholar 

  44. Shit S, Chhetri S, Jang W, Murmu NC, Koo H, Samanta P, Kuila T (2018) Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application. ACS Appl Mater interf 10:27712–27722

    Article  CAS  Google Scholar 

  45. Hegazy MBZ, Mohamed RB, Yamauchi Y, Pakdel A, Cao R, Apfel U (2021) Synergistic electrocatalytic hydrogen evolution in Ni/NiS nanoparticles wrapped in multi-heteroatom-doped reduced graphene oxide Nanosheets. ACS Appl Mater Interfaces 13:34043–34052

    Article  CAS  PubMed  Google Scholar 

  46. Chen P (2017) 3D nitrogen‐anion‐decorated nickel sulfides for highly efficient overall water splitting. J Adv Mater 29:1701584

  47. Fei B, Chen Z, Liu J, Xu H, Yan X, Qing H, Chen M, Wu R (2020) Ultrathinning nickel sulfide with modulated electron density for efficient water splitting. Adv Energy Mater 10:2001963

    Article  CAS  Google Scholar 

  48. Liu C, Jia D, Hao Q, Zheng X, Li Y, Tang C, Liu H, Zhang J, Zheng X (2019) P-doped iron–nickel sulfide nanosheet arrays for highly efficient overall water splitting. ACS Appl Mater Interfaces 11:27667–27676

    Article  CAS  PubMed  Google Scholar 

  49. Yaseen W, Ullah N, Xie M, Wei W, Xu Y, Zahid M, Oluigbo CJ, Yusuf BA, Xie J (2021) Cobalt–iron nanoparticles encapsulated in mesoporous carbon nanosheets: a one-pot synthesis of highly stable electrocatalysts for overall water splitting. Int J Hydrog Energy 46:5234–5249

    Article  CAS  Google Scholar 

  50. Wang S, Xue W, Fang Y, Li Y, Wang W, Zhao R (2020) Bismuth activated succulent-like binary metal sulfide heterostructure as a binder-free electrocatalyst for enhanced oxygen evolution reaction. J Colloid Interface Sci 573:150–157

    Article  CAS  PubMed  Google Scholar 

  51. Chaudhary P, Ingole PP (2020) Nickel incorporated graphitic carbon nitride supported copper sulfide for efficient noble-metal-free photo-electrochemical water splitting. Electrochim Acta 357:136798

    Article  CAS  Google Scholar 

  52. Sweis AT, Masud J, Nath M (2016) Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ Sci 9:1771–1782

    Article  CAS  Google Scholar 

  53. LiuY CH, Lyu M, Fan S, Liu Q, Zhang W, Zhi Y, Wang C, Xiao C, Wei S, Ye B, Xie Y (2014) Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J Am Chem Soc 136:15670–15675

    Article  CAS  Google Scholar 

  54. Zhao X, Zhang H, Yan Y, Cao J, Li X, Zhou S, Peng Z, Zeng J (2017) Engineering the electrical conductivity of lamellar silver-doped cobalt (II) selenide nanobelts for enhanced oxygen evolution. Angew Chem 129:334–338

    Article  Google Scholar 

  55. Premnath K, Arunachalam P, Amer MS, Madhavan J, Al-Mayouf AM (2019) Hydrothermally synthesized nickel molybdenum selenide composites as cost-effective and efficient trifunctional electrocatalysts for water splitting reactions. Int J Hydrog Energy 44:22796–22805

    Article  CAS  Google Scholar 

  56. Ming F, Liang H, Shi H, Mei G, Wang Z (2016) MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J Mater Chem A 4:15148–15155

    Article  CAS  Google Scholar 

  57. Chai YM, Zhang XY, Lin JH, Qin JF, Liu ZZ, Xie JY (2019) Three-dimensional VOx/NiS/NF nanosheets as efficient electrocatalyst for oxygen evolution reaction. Int J Hydrog Energy 21:10156–10162

    Article  CAS  Google Scholar 

  58. Chen JS, Ren J, Shalom M, Fellinger T, Antonietti M (2016) Stainless steel mesh-supported NiS nanosheet array as highly efficient catalyst for oxygen evolution reaction. ACS appl Mat interfaces 8:5509–5516

    Article  CAS  Google Scholar 

  59. Srinivas K, Chen Y, Wang B, Yu B, Wang X, Hu Y (2020) Metal–organic framework-derived NiS/Fe3O4 heterostructure-decorated carbon nanotubes as highly efficient and durable electrocatalysts for oxygen evolution reaction. ACS Appl Mater Interfaces 28:31552–31563

    Article  CAS  Google Scholar 

  60. Ma Z, Zhao Q, Li J, Tang B, Zhang Z, Wang X (2018) Three-dimensional well-mixed/highly-densed NiS-CoS nanorod arrays: an efficient and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Electrochem Acta 260:82–91

    Article  CAS  Google Scholar 

  61. Wang J, Zeng H (2019) A hybrid electrocatalyst with a coordinatively unsaturated metal–organic framework shell and hollow Ni3S2/NiS core for oxygen evolution reaction applications ACS APPl Mater Interface Sci 26:23180–23191

  62. McCrory CC, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347–4357

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author M. N. Ashiq received financial support from Bahauddin Zakariya University Multan. The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R291), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Moreover, we would like to thank Taif University Research Supporting Project number (TURSP-2020/63), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naeem Ashiq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abid, A.G., Ashiq, M.F., Alfryyan, N. et al. Stainless steel supported NiS/CeS nanocomposite for significantly enhanced oxygen evolution reaction in alkaline media. J Solid State Electrochem 26, 2107–2118 (2022). https://doi.org/10.1007/s10008-022-05202-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05202-1

Keywords

Navigation