Skip to main content
Log in

Electrochemical extraction of ytterbium from LiCl–KCl-YbCl3-ZnCl2 melt by forming Zn–Yb alloys

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior of Yb(III) was studied at a W electrode in LiCl–KCl–ZnCl2 molten salt system. Cyclic voltammetry, square wave voltammetry, open circuit chronopotentiometry, and chronopotentiometry were used to investigate the electrochemical co-deposition of Yb(III) and Zn(II) in LiCl–KCl melt. Extraction efficiency of Yb(III) from LiCl–KCl–ZnCl2 melt was calculated to be 99.49% after potentiostatic electrolysis for 40 h. Zn–Yb alloys were prepared by galvanostatic electrolysis through co-deposition of Zn(II) and Yb(III) for 3 h. XRD and SEM–EDS were used to analyze the components and morphology. YbZn2 intermetallic compound is the most stable product under the experimental electrolysis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Choi EY, Jeong SM (2015) Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology. Prog Nat Sci Mater 25:572–582. https://doi.org/10.1016/j.pnsc.2015.11.001

    Article  CAS  Google Scholar 

  2. Laidler J, Battles J, Miller W, Ackerman J, Carls E (1997) Development of pyroprocessing technology. Prog Nucl Energ 31:131–140. https://doi.org/10.1016/0149-1970(96)00007-8

    Article  CAS  Google Scholar 

  3. Zhang J (2014) Electrochemistry of actinides and fission products in molten salts—data review. J Nucl Mater 447:271–284. https://doi.org/10.1016/j.jnucmat.2013.12.017

    Article  CAS  Google Scholar 

  4. Nawada HP, Fukuda K (2005) Role of pyro-chemical processes in advanced fuel cycles. J Phys Chem Solids 66:647–651. https://doi.org/10.1016/j.jpcs.2004.07.022

    Article  CAS  Google Scholar 

  5. Taxil P, Massot L, Nourry C, Gibilaro M, Chamelot P, Cassayre L (2009) Lanthanides extraction processes in molten fluoride media: Application to nuclear spent fuel reprocessing. J Fluorine Chem 130:94–101. https://doi.org/10.1016/j.jfluchem.2008.07.004

    Article  CAS  Google Scholar 

  6. Iizuka M, Akagi M, Koyama T (2014) High-temperature distillation and consolidation of U-Zr cathode product from molten salt electrorefining of simulated metallic fuel. J Nucl Mater 448:259–269. https://doi.org/10.1016/j.jnucmat.2014.02.015

    Article  CAS  Google Scholar 

  7. Mcfarlane HF, Lineberry MJ (1997) The IFR fuel cycle demonstration. Prog Nucl Energ 31:155–173. https://doi.org/10.1016/0149-1970(96)00009-1

    Article  CAS  Google Scholar 

  8. Zhang J, Lahti EA, Zhou W (2015) Thermodynamic properties of actinides and rare earth fission products in liquid cadmium. J Radioanal Nucl Chem 303:1637–1648. https://doi.org/10.1007/s10967-014-3827-1

    Article  CAS  Google Scholar 

  9. Zhang J (2014) Kinetic model for electrorefining, part II: Model applications and case studies. Prog Nucl Energ 70:287–297. https://doi.org/10.1016/j.pnucene.2013.03.008

    Article  CAS  Google Scholar 

  10. Yoon D, Phongikaroon S, Zhang J (2016) Electrochemical and thermodynamic properties of CeCl3 on liquid cadmium cathode (LCC) in LiCl-KCl eutectic salt. J Electrochem Soc 163:E97. https://doi.org/10.1149/2.0101605jes

    Article  CAS  Google Scholar 

  11. Kim SH, Paek S, Kim TJ, Park DY, Ahn DH (2012) Electrode reactions of Ce3+/Ce couple in LiCl–KCl solutions containing CeCl3 at solid W and liquid Cd electrodes. Electrochim Acta 85:332–335. https://doi.org/10.1016/j.electacta.2012.08.084

    Article  CAS  Google Scholar 

  12. Castrillejo Y, Hernández P, Fernández R, Barrado E (2014) Electrochemical behaviour of terbium in the eutectic LiCl-KCl in Cd liquid electrodes- evaluation of the thermochemical properties of the TbCdx intermetallic compounds. Electrochim Acta 147:743–751. https://doi.org/10.1016/j.electacta.2014.10.005

    Article  CAS  Google Scholar 

  13. Yin TQ, Liu K, Liu YL, Yan YD, Wang GL, Chai ZF, Shi WQ (2018) Electrochemical and thermodynamic properties of uranium on the liquid bismuth electrode in LiCl-KCl eutectic. J Electrochem Soc 165:D722–D730. https://doi.org/10.1149/2.0571814jes

    Article  CAS  Google Scholar 

  14. Liu K, Tang HB, Pang JW, Liu YL, Feng YX, Chai ZF, Shi WQ (2016) Electrochemical properties of uranium on the liquid gallium electrode in LiCl-KCl eutectic. J Electrochem Soc 163:D750–D756. https://doi.org/10.1149/2.1191609jes

    Article  CAS  Google Scholar 

  15. Liu K, Liu YL, Chai ZF, Shi WQ (2017) Evaluation of the electroextractions of Ce and Nd from LiCl-KCl molten salt using liquid Ga electrode. J Electrochem Soc 164:D169–D178. https://doi.org/10.1149/2.0511704jes

    Article  CAS  Google Scholar 

  16. Li M, Gu QQ, Han W, Yan YD, Zhang ML, Sun Y, Shi WQ (2015) Electrodeposition of Tb on Mo and Al electrodes: thermodynamic properties of TbCl3 and TbAl2 in the LiCl-KCl eutectic melts. Electrochim Acta 167:139–146. https://doi.org/10.1016/j.electacta.2015.03.145

    Article  CAS  Google Scholar 

  17. Liu YL, Ye GA, Yuan LY, Liu K, Feng YX, Li ZJ, Chai ZF, Shi WQ (2015) Electroseparation of thorium from ThO2 and La2O3 by forming Th-Al alloys in LiCl-KCl eutectic. Electrochim Acta 158:277–286. https://doi.org/10.1016/j.electacta.2015.01.128

    Article  CAS  Google Scholar 

  18. Wang P, Han W (2019) Electrochemical and thermodynamic properties of ytterbium and formation of Zn–Yb alloy on liquid Zn electrode. J Nucl Mater 517:157–164. https://doi.org/10.1016/j.jnucmat.2019.02.003

    Article  CAS  Google Scholar 

  19. Wang P, Ji D, Zhang M, Yan Y, Han W, Du S (2019) A study on the periodic rule of reduction potentials of lanthanides on liquid zinc electrode. J Electrochem Soc 166:D689. https://doi.org/10.1149/2.0021914jes

    Article  CAS  Google Scholar 

  20. Zhou W, Liu YL, Liu K, Liu ZR, Yuan LY, Wang L, Feng YX, Chai ZF, Shi WQ (2015) Electroreduction of Gd3+ on W and Zn electrodes in LiCl–KCl eutectic: a comparison study. J Electrochem Soc 162:D531–D539. https://doi.org/10.1149/2.0541510jes

    Article  CAS  Google Scholar 

  21. Jang J, Kim TJ, Eun HC, Kim GY, Lee S (2018) Uranium recovery with zinc distillation from a liquid zinc cathode for pyroprocessing. J Radioanal Nucl Chem 316:649–654. https://doi.org/10.1007/s10967-018-5789-1

    Article  CAS  Google Scholar 

  22. Zhu Z, Pelton AD (2015) Critical assessment and optimization of phase diagrams and thermodynamic properties of RE–Zn systems–part II–Y–Zn, Eu–Zn, Gd–Zn, Tb–Zn, Dy–Zn, Ho–Zn, Er–Zn, Tm–Zn, Yb–Zn and Lu–Zn. J Alloys Compd 641:261–271. https://doi.org/10.1016/j.jallcom.2015.02.227

    Article  CAS  Google Scholar 

  23. Nourry C, Massot L, Chamelot P, Taxil P (2009) Neodymium and gadolinium extraction from molten fluorides by reduction on a reactive electrode. J Appl Electrochem 39:2359. https://doi.org/10.1007/s10800-009-9922-2

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the National Natural Science Foundation of China (21976047, 21790373 and 22176045), the Decommissioning of nuclear facilities and special funds for radioactive waste management ([2019]1276), and the Sino-Russian Cooperation Fund of Harbin Engineering University, and the University (2021HEUCRF004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongde Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Yin, T., Wang, P. et al. Electrochemical extraction of ytterbium from LiCl–KCl-YbCl3-ZnCl2 melt by forming Zn–Yb alloys. J Solid State Electrochem 26, 1067–1074 (2022). https://doi.org/10.1007/s10008-022-05147-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05147-5

Keywords

Navigation