Skip to main content
Log in

Effect of conductive polypyrrole in poly(acrylonitrile-co-butyl acrylate) water–based binder on the performance of electrochemical double-layer capacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical double-layer capacitors (EDLCs) have been widely studied due to their high-power densities, despite their low energy densities compared with those of lithium ion batteries. In particular, there have been numerous studies aiming to developing high surface area carbonic material to increase EDLCs’ capacitance. However, there have been few studies examining water-based polymeric binder as an inactive component of the EDLCs’ electrodes. In this study, we introduce a conductive water-based binder which is synthesized by an in situ two-step polymerization, and use it for EDLC electrodes. Polypyrrole (PPy) is used as an electrically conducting filler for a water-based polyacrylate binder to enhance the electrochemical performance of EDLCs. Consequently, the use of the new poly(pyrrole/acrylonitrile-co-butyl acrylate) (PPyANBA) increases the specific capacitance of the EDLC electrode up to 109.7 F g−1 from the 101.0 F g−1 value of the nonconductive PANBA-containing EDLC electrode at 10,000 cycles. This is mainly attributed to the better dispersion and lower electrical resistance of the PPyANBA binder without losing the thermal, ion transport, and binding characteristics of the PANBA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bresser D, Hosoi K, Howell D, Li H, Zeisel H, Amine K, Passerini S (2018) Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J Power Sources 382:176–178. https://doi.org/10.1016/j.jpowsour.2018.02.039

    Article  CAS  Google Scholar 

  2. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613. https://doi.org/10.1021/cr100290v

    Article  CAS  PubMed  Google Scholar 

  3. Kim H, Hong J, Park K-Y, Kim H, Kim SW, Kang K (2014) Aqueous rechargeable Li and Na ion batteries. Chem Rev 114(23):11788–11827. https://doi.org/10.1021/cr500232y

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen ZX (2018) Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 5(1):1700322. https://doi.org/10.1002/advs.201700322

    Article  CAS  Google Scholar 

  5. Soloveichik GL (2011) Battery technologies for large-scale stationary energy storage. Annu Rev Chem Biomol Eng 2(1):503–527. https://doi.org/10.1146/annurev-chembioeng-061010-114116

    Article  CAS  PubMed  Google Scholar 

  6. Fong KD, Wang T, Smoukov SK (2017) Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustain Energy Fuels 1(9):1857–1874. https://doi.org/10.1039/C7SE00339K

    Article  CAS  Google Scholar 

  7. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15-16):2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6

    Article  Google Scholar 

  8. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270. https://doi.org/10.1021/cr020730k

    Article  CAS  PubMed  Google Scholar 

  9. Afif A, Rahman SM, Tasfiah Azad A et al (2019) Advanced materials and technologies for hybrid supercapacitors for energy storage—a review. J Energy Storage 25:100852. https://doi.org/10.1016/j.est.2019.100852

    Article  Google Scholar 

  10. Wen Z, Yeh M-H, Guo H, Wang J, Zi Y, Xu W, Deng J, Zhu L, Wang X, Hu C, Zhu L, Sun X, Wang ZL (2016) Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci Adv 2(10):e1600097. https://doi.org/10.1126/sciadv.1600097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu Y, Cheng H, Zhao F, Chen N, Jiang L, Feng Z, Qu L (2014) All-in-one graphene fiber supercapacitor. Nanoscale 6(12):6448–6451. https://doi.org/10.1039/C4NR01220H

    Article  CAS  PubMed  Google Scholar 

  12. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—–a review. J Mater 2(1):37–54. https://doi.org/10.1016/j.jmat.2016.01.001

    Article  Google Scholar 

  13. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9(5):1872–1876. https://doi.org/10.1021/nl8038579

    Article  CAS  PubMed  Google Scholar 

  14. Taberna P-L, Chevallier G, Simon P, Plée D, Aubert T (2006) Activated carbon–carbon nanotube composite porous film for supercapacitor applications. Mater Res Bull 41(3):478–484. https://doi.org/10.1016/j.materresbull.2005.09.029

    Article  CAS  Google Scholar 

  15. Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2(2):159–173. https://doi.org/10.1016/j.nanoen.2012.09.008

    Article  CAS  Google Scholar 

  16. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  17. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91(1):37–50. https://doi.org/10.1016/S0378-7753(00)00485-7

    Article  CAS  Google Scholar 

  18. Leitner K, Lerf A, Winter M, Besenhard JO, Villar-Rodil S, Suárez-García F, Martínez-Alonso A, Tascón JMD (2006) Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors. J Power Sources 153(2):419–423. https://doi.org/10.1016/j.jpowsour.2005.05.078

    Article  CAS  Google Scholar 

  19. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531. https://doi.org/10.1039/B813846J

    Article  CAS  PubMed  Google Scholar 

  20. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon mMaterials. Adv Mater 18(16):2073–2094. https://doi.org/10.1002/adma.200501576

    Article  CAS  Google Scholar 

  21. Wang R, Qian Y, Li W et al (2018) Performance-enhanced activated carbon electrodes for supercapacitors combining both graphene-modified current collectors and graphene conductive additive. Materials (Basel) 11. https://doi.org/10.3390/ma11050799

  22. Zhu Z (2016) Effects of various binders on supercapacitor performances. Int J Electrochem Sci 11:8270–8279. https://doi.org/10.20964/2016.10.04

    Article  CAS  Google Scholar 

  23. Zheng H, Yang R, Liu G, Song X, Battaglia VS (2012) Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode. J Phys Chem C 116(7):4875–4882. https://doi.org/10.1021/jp208428w

    Article  CAS  Google Scholar 

  24. Bresser D, Buchholz D, Moretti A, Varzi A, Passerini S (2018) Alternative binders for sustainable electrochemical energy storage—the transition to aqueous electrode processing and bio-derived polymers. Energy Environ Sci 11(11):3096–3127. https://doi.org/10.1039/C8EE00640G

    Article  CAS  Google Scholar 

  25. Yabuuchi N, Kinoshita Y, Misaki K, Matsuyama T, Komaba S (2015) Electrochemical properties of LiCoO2 electrodes with latex binders on high-voltage exposure. J Electrochem Soc 162(4):A538–A544. https://doi.org/10.1149/2.0151504jes

    Article  CAS  Google Scholar 

  26. Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161(1):617–622. https://doi.org/10.1016/j.jpowsour.2006.03.073

    Article  CAS  Google Scholar 

  27. Zhang R, Yang X, Zhang D, Qiu H, Fu Q, Na H, Guo Z, du F, Chen G, Wei Y (2015) Water soluble styrene butadiene rubber and sodium carboxyl methyl cellulose binder for ZnFe2O4 anode electrodes in lithium ion batteries. J Power Sources 285:227–234. https://doi.org/10.1016/j.jpowsour.2015.03.100

    Article  CAS  Google Scholar 

  28. Yoshio M, Brodd RJ, Kozawa A (2009) Lithium-ion batteries: Science and Technologies. Springer-Verlag, New York

    Book  Google Scholar 

  29. Nguyen MHT, Oh E-S (2013) Application of a new acrylonitrile/butylacrylate water-based binder for negative electrodes of lithium-ion batteries. Electrochem Commun 35:45–48. https://doi.org/10.1016/j.elecom.2013.07.042

    Article  CAS  Google Scholar 

  30. Nguyen MHT, Sugartseren N, Kim B, Jeon S, Cho YH, Kim T, Oh ES (2019) Enhancing the electrochemical performance of lithium ion battery anodes by poly(acrylonitrile–butyl acrylate)/graphene nanoplatelet composite binder. J Appl Electrochem 49(4):389–398. https://doi.org/10.1007/s10800-019-01289-z

    Article  CAS  Google Scholar 

  31. Ajit S, Palaniappan S, Gopukumar S (2013) Polyaniline binder for functionalized acetylene black: a hybrid material for supercapacitor. Synth Met 180:43–48. https://doi.org/10.1016/j.synthmet.2013.07.022

    Article  CAS  Google Scholar 

  32. Das PR, Komsiyska L, Osters O, Wittstock G (2015) PEDOT: PSS as a functional binder for cathodes in lithium ion batteries. J Electrochem Soc 162(4):A674–A678. https://doi.org/10.1149/2.0581504jes

    Article  CAS  Google Scholar 

  33. Higgins TM, Park S-H, King PJ, Zhang C(J), McEvoy N, Berner NC, Daly D, Shmeliov A, Khan U, Duesberg G, Nicolosi V, Coleman JN (2016) A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10(3):3702–3713. https://doi.org/10.1021/acsnano.6b00218

    Article  CAS  PubMed  Google Scholar 

  34. Zhong H, He A, Lu J, Sun M, He J, Zhang L (2016) Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries. J Power Sources 336:107–114. https://doi.org/10.1016/j.jpowsour.2016.10.041

    Article  CAS  Google Scholar 

  35. Lee K, Lim S, Tron A, Mun J, Kim YJ, Yim T, Kim TH (2016) Polymeric binder based on PAA and conductive PANI for high performance silicon-based anodes. RSC Adv 6(103):101622–101625. https://doi.org/10.1039/C6RA23805J

    Article  CAS  Google Scholar 

  36. Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25. https://doi.org/10.1016/j.jiec.2014.03.022

    Article  CAS  Google Scholar 

  37. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498. https://doi.org/10.1016/j.compscitech.2008.06.018

    Article  CAS  Google Scholar 

  38. Marsden AJ, Papageorgiou DG, Vallés C et al (2018) Electrical percolation in graphene–polymer composites. 2D Mater 5:032003. https://doi.org/10.1088/2053-1583/aac055

  39. Stauffer D, Aharony A (2018) Introduction to percolation theory, 2nd edn. CRC Press

  40. Han S-W, Kim S-J, Oh E-S (2014) Significant performance enhancement of Li4Ti5O12 electrodes using a graphene-polyvinylidene fluoride conductive composite binder. J Electrochem Soc 161(4):A587–A592. https://doi.org/10.1149/2.035404jes

    Article  CAS  Google Scholar 

  41. Kundu D, Krumeich F, Nesper R (2013) Investigation of nano-fibrous selenium and its polypyrrole and graphene composite as cathode material for rechargeable Li-batteries. J Power Sources 236:112–117. https://doi.org/10.1016/j.jpowsour.2013.02.050

    Article  CAS  Google Scholar 

  42. Zhao Y, Huang Y, Wang Q (2013) Graphene supported poly-pyrrole(PPY)/Li2SnO3 ternary composites as anode materials for lithium ion batteries. Ceram Int 39(6):6861–6866. https://doi.org/10.1016/j.ceramint.2013.02.020

    Article  CAS  Google Scholar 

  43. Jurewicz K, Delpeux S, Bertagna V, Béguin F, Frackowiak E (2001) Supercapacitors from nanotubes/polypyrrole composites. Chem Phys Lett 347(1-3):36–40. https://doi.org/10.1016/S0009-2614(01)01037-5

    Article  CAS  Google Scholar 

  44. An H, Wang Y, Wang X, Zheng L, Wang X, Yi L, Bai L, Zhang X (2010) Polypyrrole/carbon aerogel composite materials for supercapacitor. J Power Sources 195(19):6964–6969. https://doi.org/10.1016/j.jpowsour.2010.04.074

    Article  CAS  Google Scholar 

  45. Nguyen MHT, Oh E-S (2015) Improvement of the characteristics of poly(acrylonitrile–butylacrylate) water-dispersed binder for lithium-ion batteries by the addition of acrylic acid and polystyrene seed. J Electroanal Chem 739:111–114. https://doi.org/10.1016/j.jelechem.2014.12.026

    Article  CAS  Google Scholar 

  46. Qi Y, Nguyen MHT, Oh E-S (2020) Enhancement of the lithium titanium oxide anode performance by the copolymerization of conductive polypyrrole with poly(acrylonitrile/butyl acrylate) binder. J Appl Electrochem 50(4):431–438. https://doi.org/10.1007/s10800-020-01401-8

    Article  CAS  Google Scholar 

  47. Arora K, Chaubey A, Singhal R, Singh RP, Pandey MK, Samanta SB, Malhotra BD, Chand S (2006) Application of electrochemically prepared polypyrrole–polyvinyl sulphonate films to DNA biosensor. Biosens Bioelectron 21(9):1777–1783. https://doi.org/10.1016/j.bios.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  48. Chougule MA, Pawar SG, Godse PR, Mulik RN, Sen S, Patil VB (2011) Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett 01(01):6–10. https://doi.org/10.4236/snl.2011.11002

    Article  CAS  Google Scholar 

  49. Chen L, Bromberg L, Schreuder-Gibson H, Walker J, Alan Hatton T, Rutledge GC (2009) Chemical protection fabrics via surface oximation of electrospun polyacrylonitrile fiber mats. J Mater Chem 19(16):2432. https://doi.org/10.1039/b818639a

    Article  CAS  Google Scholar 

  50. Ding A, Lu G, Guo H, Huang X (2017) Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate. Sci Rep 7(1):43706. https://doi.org/10.1038/srep43706

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ennis BC, Truong V-T (1993) Thermal and electrical stability of polypyrrole at elevated temperatures. Synth Met 59(3):387–399. https://doi.org/10.1016/0379-6779(93)91170-7

    Article  CAS  Google Scholar 

  52. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150(3):A292. https://doi.org/10.1149/1.1543948

    Article  CAS  Google Scholar 

  53. Hu Y, Liu H, Ke Q, Wang J (2014) Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process. J Mater Chem A 2(30):11753. https://doi.org/10.1039/C4TA01269K

    Article  CAS  Google Scholar 

  54. Aslan M, Weingarth D, Jäckel N, Atchison JS, Grobelsek I, Presser V (2014) Polyvinylpyrrolidone as binder for castable supercapacitor electrodes with high electrochemical performance in organic electrolytes. J Power Sources 266:374–383. https://doi.org/10.1016/j.jpowsour.2014.05.031

    Article  CAS  Google Scholar 

  55. Moon H, Lee H, Kwon J, Suh YD, Kim DK, Ha I, Yeo J, Hong S, Ko SH (2017) Ag/Au/polypyrrole core-shell nanowire network for transparent, stretchable and flexible supercapacitor in wearable energy devices. Sci Rep 7(1):41981. https://doi.org/10.1038/srep41981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eguchi T, Tashima D, Fukuma M, Kumagai S (2020) Activated carbon derived from Japanese distilled liquor waste: application as the electrode active material of electric double-layer capacitors. J Clean Prod 259:120822. https://doi.org/10.1016/j.jclepro.2020.120822

    Article  CAS  Google Scholar 

  57. Bai Y, Yin Y, Xuan Y, Han X (2020) Scalable and fast fabrication of holey multilayer graphene by microwave and its application in supercapacitors. Nanotechnology. 32(4):045602. https://doi.org/10.1088/1361-6528/abbfd4

    Article  CAS  Google Scholar 

  58. Zou Z, Zhao J, Xue J, Huang R, Jiang C (2017) Highly porous carbon spheres prepared by boron-templating and reactive H 3 PO 4 activation as electrode of supercapacitors. J Electroanal Chem 799:187–193. https://doi.org/10.1016/j.jelechem.2017.06.005

    Article  CAS  Google Scholar 

  59. Yang D, Jing H, Wang Z, Li J, Hu M, Lv R, Zhang R, Chen D (2018) Coupled ultrasonication-milling synthesis of hierarchically porous carbon for high-performance supercapacitor. J Colloid Interface Sci 528:208–224. https://doi.org/10.1016/j.jcis.2018.05.050

    Article  CAS  PubMed  Google Scholar 

  60. Mei B-A, Munteshari O, Lau J, Dunn B, Pilon L (2018) Physical interpretations of Nyquist plots for EDLC electrodes and devices. J Phys Chem C 122(1):194–206. https://doi.org/10.1021/acs.jpcc.7b10582

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Research Foundation of Korea grant funded by the Ministry of Science and ICT (MSIT) (NRF-2019R1A2C1004593) and by the Industrial Strategic Technology Development Program funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea) (20009866).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Suok Oh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 4.95 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Nguyen, M.H.T. & Oh, ES. Effect of conductive polypyrrole in poly(acrylonitrile-co-butyl acrylate) water–based binder on the performance of electrochemical double-layer capacitors. J Solid State Electrochem 25, 963–972 (2021). https://doi.org/10.1007/s10008-020-04864-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04864-z

Keywords

Navigation