Skip to main content

Advertisement

Log in

2D DUT-8(Ni)-derived Ni@C nanosheets for efficient hydrogen evolution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The development of high-performance, low-cost, and high-stability catalysts for electrocatalytic hydrogen evolution reaction is a key step in the green and sustainable production of hydrogen energy. Herein, we prepared 2D Ni@C nanosheets by high-temperature carbonization of 2D MOFs DUT-8(Ni). It was used as a highly efficient hydrogen evolution catalyst in alkaline solution. We compared the properties of the composites obtained at different carbonization temperatures. It was found that the DUT-8(Ni) was not completely decomposed at low temperatures, and the Ni NPs had lower crystallinity, so the composites show poor electrocatalytic performance. With the increase of carbonization temperature, DUT-8(Ni) was completely decomposed, and the crystallinity of Ni NPs gradually increased, and the electrocatalytic performance gradually improves. However, when the temperature was 800 °C, the electrochemical surface area of the composite reduced, the electrocatalytic performance decreased slightly. The Ni NPs were uniformly embedded on the 2D carbon nanosheets. The carbon nanosheets matrix provides good electrical conductivity. At the same time, the Ni NPs coated the thin graphite carbon layer can effectively prevent particle agglomeration. This method provides an idea for the preparation of 2D high-performance electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Badwal SPS, Giddey SS, Munnings C, Bhatt AI, Hollenkamp AF (2014) Emerging electrochemical energy conversion and storage technologies. Front Chem 2:79

    Article  Google Scholar 

  2. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330

    Article  CAS  Google Scholar 

  3. Anantharaj S, Ede SR, Karthick K, Sam Sankar S, Sangeetha K, Karthik PE, Kundu S (2018) Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ Sci 11(4):744–771

    Article  CAS  Google Scholar 

  4. Patel PP, Hanumantha PJ, Velikokhatnyi OI, Datta MK, Hong D, Gattu B, Poston JA, Manivannan A, Kumta PN (2015) Nitrogen and cobalt co-doped zinc oxide nanowires – viable photoanodes for hydrogen generation via photoelectrochemical water splitting. J Power Sources 299:11–24

    Article  CAS  Google Scholar 

  5. Li A, Sun Y, Yao T, Han H (2018) Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen. Chemistry 24(69):18334–18355

    Article  CAS  Google Scholar 

  6. Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180

    Article  CAS  Google Scholar 

  7. Wang J, Xu F, Jin H, Chen Y, Wang Y (2017) Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv Mater 29(14):1605838

    Article  Google Scholar 

  8. Xiong B, Chen L, Shi J (2018) Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting. ACS Catal 8(4):3688–3707

    Article  CAS  Google Scholar 

  9. Liu J, Zhu D, Zheng Y, Vasileff A, Qiao S-Z (2018) Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal 8(7):6707–6732

    Article  CAS  Google Scholar 

  10. Lin Y, Tian Z, Zhang L, Ma J, Jiang Z, Deibert BJ, Ge R, Chen L (2019) Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat Commun 10(1):162

    Article  Google Scholar 

  11. Wang Y, Xie C, Zhang Z, Liu D, Chen R, Wang S (2018) In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction. Adv Funct Mater 28(4):1703363

    Article  Google Scholar 

  12. Zou H, He B, Kuang P, Yu J, Fan K (2018) Metal-organic framework-derived nickel-cobalt sulfide on ultrathin mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl Mater Interfaces 10(26):22311–22319

    Article  CAS  Google Scholar 

  13. Zhang Y, Pan A, Ding L, Zhou Z, Wang Y, Niu S, Liang S, Cao G (2017) Nitrogen-doped yolk-shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl Mater Interfaces 9(4):3624–3633

    Article  CAS  Google Scholar 

  14. Wang F, Sun Y, He Y, Liu L, Xu J, Zhao X, Yin G, Zhang L, Li S, Mao Q, Huang Y, Zhang T, Liu B (2017) Highly efficient and durable MoNiNC catalyst for hydrogen evolution reaction. Nano Energy 37:1–6

    Article  Google Scholar 

  15. Wang R, Dong XY, Du J, Zhao JY, Zang SQ (2018) MOF-derived bifunctional Cu3 P nanoparticles coated by a N,P-Codoped carbon shell for hydrogen evolution and oxygen reduction. Adv Mater 30(6):1703711

    Article  Google Scholar 

  16. Ji L, Wang J, Teng X, Dong H, He X, Chen Z (2018) N,P-doped molybdenum carbide nanofibers for efficient hydrogen production. ACS Appl Mater Interfaces 10(17):14632–14640

    Article  CAS  Google Scholar 

  17. Fan L, Liu PF, Yan X, Gu L, Yang ZZ, Yang HG, Qiu S, Yao X (2016) Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat Commun 7:10667

    Article  CAS  Google Scholar 

  18. Das D, Santra S, Nanda KK (2018) In situ fabrication of a nickel/molybdenum carbide-anchored N-doped graphene/CNT hybrid: an efficient (pre)catalyst for OER and HER. ACS Appl Mater Interfaces 10(41):35025–35038

    Article  CAS  Google Scholar 

  19. Liu X, Dai L (2016) Carbon-based metal-free catalysts. Nat Rev Mater 1(11):16064

    Article  CAS  Google Scholar 

  20. Rao CNR, Govindaraj A, Gundiah G, Vivekchand SRC (2004) Nanotubes and nanowires. Chem Eng Sci 59(22–23):4665–4671

    Article  CAS  Google Scholar 

  21. Chen Z, Molina-Jirón C, Klyatskaya S, Klappenberger F, Ruben M (2017) 1D and 2D graphdiynes: recent advances on the synthesis at interfaces and potential nanotechnological applications. Ann Phys 529(11):1700056

    Article  Google Scholar 

  22. Abedini H, Shariati A, Khosravi-Nikou MR (2020) Adsorption of propane and propylene on M-MOF-74 (M = Cu, Co): equilibrium and kinetic study. Chem Eng Res Des 153:96–106

    Article  CAS  Google Scholar 

  23. Mahmood A, Guo W, Tabassum H, Zou R (2016) Metal-organic framework-based nanomaterials for electrocatalysis. Adv Energy Mater 6(17):1600423

    Article  Google Scholar 

  24. Fernandez-Bartolome E, Santos J, Khodabakhshi S, McCormick LJ, Teat SJ, de Pipaon CS, Galan-Mascaros JR, Martin N, Sanchez Costa J (2018) A robust and unique iron(ii) mosaic-like MOF. Chem Commun (Camb) 54(44):5526–5529

    Article  CAS  Google Scholar 

  25. Zhan G, Zeng HC (2018) Hydrogen spillover through Matryoshka-type (ZIFs@)n-1ZIFs nanocubes. Nat Commun 9(1):3778

    Article  Google Scholar 

  26. Trepte K, Schwalbe S, Seifert G (2015) Electronic and magnetic properties of DUT-8(Ni). Phys Chem Chem Phys 17(26):17122–17129

    Article  CAS  Google Scholar 

  27. Klein N, Herzog C, Sabo M, Senkovska I, Getzschmann J, Paasch S, Lohe MR, Brunner E, Kaskel S (2010) Monitoring adsorption-induced switching by 129Xe NMR spectroscopy in a new metal–organic framework Ni2(2,6-ndc)2(dabco). Phys Chem Chem Phys 12(37):11778–11784

    Article  CAS  Google Scholar 

  28. Wei C, Rao RR, Peng J, Huang B, Stephens IEL, Risch M, Xu ZJ, Shao-Horn Y (2019) Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv Mater:1806296

  29. Jin J, Zheng Y, Kong LB, Srikanth N, Yan Q, Zhou K (2018) Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage. J Mater Chem A 6(32):15710–15717

    Article  CAS  Google Scholar 

  30. Krylov A, Vtyurin A, Petkov P, Senkovska I, Maliuta M, Bon V, Heine T, Kaskel S, Slyusareva E (2017) Raman spectroscopy studies of the terahertz vibrational modes of a DUT-8 (Ni) metal–organic framework. Phys Chem Chem Phys 19(47):32099–32104

    Article  CAS  Google Scholar 

  31. Miura H, Bon V, Senkovska I, Ehrling S, Watanabe S, Ohba M, Kaskel S (2017) Tuning the gate-opening pressure and particle size distribution of the switchable metal–organic framework DUT-8(Ni) by controlled nucleation in a micromixer. Dalton Trans 46(40):14002–14011

    Article  CAS  Google Scholar 

  32. Sun H, Lian Y, Yang C, Xiong L, Qi P, Mu Q, Zhao X, Guo J, Deng Z, Peng Y (2018) A hierarchical nickel–carbon structure templated by metal–organic frameworks for efficient overall water splitting. Energy Environ Sci 11(9):2363–2371

    Article  CAS  Google Scholar 

  33. Jin J, Zheng Y, Kong LB, Srikanth N, Yan Q, Zhoua K (2013) Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs. J Mater Chem A 6(2018):15710–15717

    Google Scholar 

  34. Chu M, Wang L, Li X, Hou M, Li N, Dong Y, Li X, Xie Z, Lin Y, Cai W, Zhang C (2018) Carbon coated nickel - Nickel oxide composites as a highly efficient catalyst for hydrogen evolution reaction in acid medium. Electrochim Acta 264:284–291

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21865032 and 21664012) and the Innovation Team Basic Scientific Research Project of Gansu Province (1606RJIA324).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingtao Wang or Shufang Ren.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. The 2D Ni@C nanosheets were prepared by pyrolysis of 2D MOFs of DUT-8(Ni).

2. Ni NPs are embedded in the 2D carbon nanosheets, which provide good conductivity.

3. Graphite carbon on the surface of Ni NPs can prevent the agglomeration of it.

4. The 2D Ni@C nanosheets have good electrocatalytic hydrogen evolution performance.

Electronic supplementary material

ESM 1

(DOCX 2503 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Yang, R., Li, J. et al. 2D DUT-8(Ni)-derived Ni@C nanosheets for efficient hydrogen evolution. J Solid State Electrochem 24, 2461–2467 (2020). https://doi.org/10.1007/s10008-020-04743-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04743-7

Keywords

Navigation