Skip to main content

Advertisement

Log in

Efficiency enhancement in dye-sensitized solar cells using hierarchical TiO2 submicron size spheres as a light scattering layer

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The photoanode of a dye-sensitized solar cell (DSSC), usually made with a nanoporous TiO2 semiconductor layer sensitized with N719 dye, plays a crucial role in the overall power conversion efficiency as it influences both the light absorption and the electron transport. Generally, enhanced photon absorbance is achieved through light scattering in the device by employing a double-layered TiO2 photoanode consisting of an active layer of smaller (~ 20 nm) P25 particles and a scattering layer consisting of larger (~ 300 nm) particles. However, due to the smaller effective surface area of the larger particle layer, the dye adsorption in the second layer is very poor, and therefore, the efficiency enhancement due to the usage of thicker photo anode is hindered. Therefore, in this study, investigations were carried out to replace the conventional, larger particle scattering layer by a morphologically different structure of TiO2. Here, the DSSC performance between two different types of scattering layers, one consisting of TiO2 nanorods (NRs) and the other consisting of hierarchically structured TiO2 submicron size spheres (MS) are compared. DSSC fabricated with P25/MS double-layered photoanode outperforms the DSSC fabricated with P25/NR double-layered photoanode. P25/MS-based DSSC delivered a highest short-circuit current density of 14.80 mA cm−2 with an efficiency of 7.38%, while the efficiency of DSSC fabricated with P25/NR photoanode exhibits 7.03% efficiency. The DSSC fabricated without a scattering layer showed only 6.68% efficiency. The diffuse reflectance and dye adsorption measurements revealed that the better performance of P25/MS double-layered DSSC is largely due to the improved photon absorption facilitated by superior light scattering as well as higher dye loading by TiO2 submicron size spheres.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  2. Kalyanasundaram K (2010) Dye-sensitized solar cells, 1st edn. EPFL press, Lausanne

    Book  Google Scholar 

  3. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634

    Article  CAS  Google Scholar 

  4. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N et al (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  CAS  Google Scholar 

  5. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commu 51(88):15894–15897

    Article  CAS  Google Scholar 

  6. Freitag M, Teuscher J, Saygili Y, Zhang X, Giordano F, Liska P, Hua J, Zakeeruddin SM, Moser JE, Grätzel M, Hagfeldt A (2017) Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat Photonics 11(6):372–378

    Article  CAS  Google Scholar 

  7. Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2004) Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology 15:1861–1865

    Article  CAS  Google Scholar 

  8. Liu Z, Su X, Hou G, Bi S, Xiao Z, Jia H (2013) Mixed photoelectrode based on spherical TiO2 nanorod aggregates for dye-sensitized solar cells with high short-circuit photocurrent density. RSc Adv 3:8474–8479

    Article  CAS  Google Scholar 

  9. Kumari JMKW, Senadeera GKR, Dissanayake MAKL, Thotawatthage CA (2017) Dependence of photovoltaic parameters on the size of cations adsorbed by TiO2 photoanode in dye-sensitized solar cells. Ionics 23(10):2895–2900

    Article  CAS  Google Scholar 

  10. Ye M, Xin X, Lin C, Lin Z (2011) High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett 11:3214–3220

    Article  CAS  Google Scholar 

  11. Senadeera GKR, Kobayashi S, Kitamura T, Wada Y, Yanagida S (2005) Versatile preparation method for mesoporousTiO2 electrodes suitable for solid-state dye sensitized photocells. Bull Mater Sci Sci 28(6):635–641

    Article  CAS  Google Scholar 

  12. Barbé CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V et al (1997) Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc 80:3157–3171

    Article  Google Scholar 

  13. Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem 48(14):2474–2499

    Article  CAS  Google Scholar 

  14. Cid JJ, Yum JH, Jang SR, Nazeeruddin MK, Martínez-Ferrero E, Palomares E et al (2007) Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. Angew Chem 119:8510–8514

    Article  Google Scholar 

  15. Chen Y, Zeng Z, Li C, Wang W, Wang X, Zhang B (2005) Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New J Chem 29(6):773–776

    Article  CAS  Google Scholar 

  16. Yum J-H, Baranoff E, Kessler F, Moehl T, Ahmad S, Bessho T, Marchioro A, Ghadiri E, Moser JE, Yi C, Nazeeruddin MK, Grätzel M (2012) A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat Commun 3(1):631

    Article  CAS  Google Scholar 

  17. Dissanayake MAKL, Thotawatthage CA, Senadeera GKR, Bandara TMWJ, Jayasundera WJMJSR, Mellander B-E (2012) Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with PAN based gel polymer electrolyte. J Photochem Photobiol A246:29–35

    Article  CAS  Google Scholar 

  18. Arof AK, Aziz MF, Noor MM, Careem MA, Bandara LRAK, Thotawatthage CA, Rupasinghe WNS, Dissanayake MAKL (2014) Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte. Int J Hydrog Energy 39(6):2929–2935

    Article  CAS  Google Scholar 

  19. Wang H, Sun K, Tao F, Stacchiola DJ, Hu YH (2013) 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew Chem 52(35):9210–9214

    Article  CAS  Google Scholar 

  20. Jo Y, Cheon JY, Yu J, Jeong HY, Han CH, Jun Y et al (2012) Highly interconnected ordered mesoporous carbon-carbon nanorod nanocomposites: Pt-free, highly efficient, and durable counter electrodes for dye-sensitized solar cells. Chem Commun 48:8057–8059

    Article  CAS  Google Scholar 

  21. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I et al (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153:A2255–A2261

    Article  CAS  Google Scholar 

  22. Hong W, Xu Y, Lu G, Li C, Shi G (2008) Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun 10:1555–1558

    Article  CAS  Google Scholar 

  23. Ito S, Murakami TN, Comte P, Liska P, Grätzel M, Nazeeruddin MK (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516:4613–4619

    Article  CAS  Google Scholar 

  24. Bakhshayesh AM, Mohammadi MR, Dadar H, Fray DJ (2013) Improved efficiency of dye-sensitized solar cells aided by corn-like TiO2 nanowires as the light scattering layer. Electrochim Acta 90:302–308

    Article  CAS  Google Scholar 

  25. Marandi M, Goudarzi Z, Moradi L (2017) Synthesis of randomly directed inclined TiO2 nanorods on the nanocrystalline TiO2 layers and their optimized application in dye sensitized solar cells. J Alloys Comp 711:603–610

    Article  CAS  Google Scholar 

  26. Zhu P, Nair AS, Yang S, Peng S, Ramakrishna S (2011) Which is a superior material for scattering layer in dye-sensitized solar cells - electrospun rice grain- or nanofiber-shaped TiO2? J Mater Chem 21:12210–12212

    Article  CAS  Google Scholar 

  27. Qiu Y, Chen W, Yang S (2010) Double-layered photoanodes from variable-size anatase TiO2 nanospindles: a candidate for high-efficiency dye-sensitized solar cells. Angew Chem 49:3675–3679

    Article  CAS  Google Scholar 

  28. Sauvage F, Chen D, Comte P, Huang F, Heiniger LP, Cheng YB (2010) Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 4:4420–4425

    Article  CAS  Google Scholar 

  29. Huang F, Chen D, Zhang XL, Caruso RA, Cheng YB (2010) Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells. Adv Funct Mater 20(8):1301–1305

    Article  CAS  Google Scholar 

  30. Al-Attafi K, Nattestad A, Yamauchi Y, Dou SX, Kim JH (2017) Aggregated mesoporous nanoparticles for high surface area light scattering layer TiO2 photoanodes in dye-sensitized solar cells. Sci Rep 7(1):10341

    Article  CAS  Google Scholar 

  31. Kumari JMKW, Sanjeevadharshini N, Dissanayake MAKL, Senadeera GKR, Thotawatthage CA (2016) The effect of TiO2 photo anode film thickness on photovoltaic properties of dye-sensitized solar cells. Ceylon J Sci 45(1):33–41

    Article  Google Scholar 

  32. Akilavasan J, Al-Jassim M, Bandara J (2015) Designing nanostructured one-dimensional TiO2 nanorod and TiO2 nanoparticle multilayer composite film as photoanode in dye-sensitized solar cells to increase the charge collection efficiency. J Nanophoton 9(1):093091

    Article  CAS  Google Scholar 

  33. Kim YJ, Lee M, Kim H, Lim G, Choi Y, Park N-G, Kim K, Lee W (2009) Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv Mater 21:3668–3673

    Article  CAS  Google Scholar 

  34. Wang Q, Moser JE, Gratzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B109:14945–14953

    Article  CAS  Google Scholar 

  35. Han L, Koide N, Chiba Y, Mitate T (2004) Modeling of an equivalent circuit for dye-sensitized solar cells. Appl Phys Lett 84(13):2433–2435

    Article  CAS  Google Scholar 

  36. Dissanayake MAKL, Jaseetharan T, Senadeera GKR, Thotawatthage CA (2018) A novel Pbs: Hg quantum dot sensitized highly efficient solar cells structure with triple layers TiO2 photoanode. Electochim Acta 269:172–179

    Article  CAS  Google Scholar 

  37. Zhang Z, Ito S, O'Regan B (2009) The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells. ZeitschriftfürPhysikalischeChemie 221:319–327

    Google Scholar 

Download references

Funding

This project received financial support from the National Science Foundation of Sri Lanka under grant no. NSF/SCH/2019/05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. K. L. Dissanayake.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Dye-sensitized solar cells with TiO2 submicron size sphere photoanode were studied.

• Cells with TiO2 P25 particle/nanorod double layer showed efficiency of 7.03%.

• Cells with TiO2 P25 particle/submicron sphere anode showed efficiency of 7.38%.

• Higher efficiency was attributed to enhanced light absorption by scattering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dissanayake, M.A.K.L., Senthuran, S. & Senadeera, G.K.R. Efficiency enhancement in dye-sensitized solar cells using hierarchical TiO2 submicron size spheres as a light scattering layer. J Solid State Electrochem 24, 2261–2269 (2020). https://doi.org/10.1007/s10008-020-04727-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04727-7

Keywords

Navigation