Skip to main content
Log in

Modification of LiCoO2 through rough coating with lithium lanthanum zirconium tantalum oxide for high-voltage performance in lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, the spray-drying technique was used to apply a 0.5 at%, 1 at%, and 1.25 at% of lithium lanthanum zirconium tantalum oxide (Li6.75La3Zr1.75Ta0.25O12) powder coating on the surface of lithium cobalt oxide (LiCoO2) cathode materials. Subsequently, these materials were sintered for either 5 or 10 h at 800 °C to obtain LiCoO2 cathode materials with a rough coating. X-ray diffraction, cyclic voltammetry, electrochemical impedance spectroscopy, and differential scanning calorimetry were then conducted to analyze differences in the structure, electrochemical properties, and thermostability of the materials before and after surface modification. The modified LiCoO2 cathodes with Li6.75La3Zr1.75Ta0.25O12 rough coating had more than twice the discharge capacity as the bare LiCoO2 cathode at a high discharge current density when the cutoff voltage ranged from 2.8 to 4.5 V. In addition, 1 at% Li6.75La3Zr1.75Ta0.25O12 coating and 5 h of sintering at 800 °C resulted in the optimal capacity retention of 85.4% after 80 cycles and a slower exothermic reaction than that of the bare LiCoO2 cathode. Thus, rough coating an adequate quantity of Li6.75La3Zr1.75Ta0.25O12 powder on a LiCoO2 cathode mitigated the reaction between the cathode material surface and electrolyte, stabilizing the main structure and enhancing the ionic conductivity and electrochemical characteristics of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amatucci GG, Tarascon JM, Klein LC (1996) Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics 83:167–173

    Article  CAS  Google Scholar 

  2. Li CN, Yang JM, Krasnov V, Arias J, Nieh KW (2007) Microstructural stability of nanocrystalline LiCoO2 in lithium thin-film batteries under high-voltage cycling. Appl Phys Lett 90:263102

    Article  CAS  Google Scholar 

  3. Yazami R, Ozawa Y, Gabrisch H, Fultz B (2004) Mechanism of electrochemical performance decay in LiCoO2 aged at high voltage. Electrochemical Acta. 50:385–390

    Article  CAS  Google Scholar 

  4. Arora P, White RE, Doyle M (1998) Capacity fade mechanisms and side reactions in lithium-ion batteries. J Electrochemical Society 145:3647

    Article  CAS  Google Scholar 

  5. Chebiam RV, Kannan AM, Prado F, Manthiram A (2001) Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries. Electrochemistry Community 3:624–627

    Article  CAS  Google Scholar 

  6. Kim YJ, Kim H, Kim B, Ahn D, Lee JG, Kim TJ, Son D, Cho D, Kim YW, Park B (2003) Electrochemical stability of thin film LiCoO2 cathodes by aluminum-oxide coating. Chem Mater 15:1505

    Article  CAS  Google Scholar 

  7. Kim YJ, Cho J, Kim TJ, Park B (2003) Suppression of cobalt dissolution from LiCoO2 cathodes with various metal-oxide coatings. J Electrochem Soc 150:1723

    Article  CAS  Google Scholar 

  8. Lee JG, Kim B, Cho J, Kim YW, Park B (2004) Effect of AlPO4-nanoparticle coating concentration on high-cutoff-voltage electrochemical performances in LiCoO2. Journal Electrochemical Soc 151:801–805

    Article  CAS  Google Scholar 

  9. Chen ZH, Lu ZH, Dahn JR (2002) Staging phase transitions in LixCoO2. J Electrochem Soc 149:1604–1609

    Article  CAS  Google Scholar 

  10. Qin Hao XCX, Jia SZ, Zhao XY (2013) Improving the cycling stability of LiCoO2 at 4.5V through surface modification by Fe2O3 coating. Electrochemical Acta. 113:439–445

    Article  CAS  Google Scholar 

  11. Sun YK, Cho SW, Myung ST, Amine K, Jai PK (2007) Effect of AlF3 coating amount on high voltage cycling performance of LiCoO2. Electrochemical Acta. 53:1013–1019

    Article  CAS  Google Scholar 

  12. Wang ZG, Wang ZX, Peng WJ, Guo HJ, Li XH, Wang JX, Qi AI (2014) Structure and electrochemical performance of LiCoO2 cathode material in different voltage ranges. Ionics 20:1525–1534

  13. Yano AI, Shikano MH, Ueda AU, Sakaebe HK, Ogumi ZP (2017) LiCoO2 degradation behavior in the high-voltage phase transition region and improved reversibility with surface coating. J Electrochem Soc 164:6116–6122

    Article  CAS  Google Scholar 

  14. Xia H, Lu L, Meng YS, Ceder G (2007) Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J Electrochem Soc 154:337–342

    Article  CAS  Google Scholar 

  15. Wang F, Jiang Y, Lin S, Wang W, Hu C, Wei Y, Mao B, Liang C (2019) High-voltage performance of LiCoO2 cathode studies by single particle microelectrodes—influence of surface modification with TiO2. Electrochemical Acta. 295:1017–1026

    Article  CAS  Google Scholar 

  16. Cho JP, Kim YJ, Parkb BW (2001) LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase. J Electrochem Soc 148:1110–1115

    Article  Google Scholar 

  17. Kim GH, Kim JH, Myung ST, Yoon CS, Sun YK (2005) Improvement of high-voltage cycling behavior of surface-modified LiNi1/3Co1/3Mn1/3O2 cathodes by fluorine substitution for Li-ion batteries. J Electrochem Soc 152:1707–1713

    Article  CAS  Google Scholar 

  18. Kim YG, Veith GM, Nanda JG, Unocic RR, Chi MF, Dudney NJ (2011) High voltage stability of LiCoO2 particles with a nano-scale Lipon coating. Electrochemical Acta 56:6573–6580

    Article  CAS  Google Scholar 

  19. Sun YK, Han JM, Myung ST, Lee SW, Amine K (2006) Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochem Commun 8:821–826

    Article  CAS  Google Scholar 

  20. Cho J, Kim YJ, Parkb BW (2000) Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem Mater 12:3788–3791

    Article  CAS  Google Scholar 

  21. Bai Y, Yin YF, Liu NA, Guo BK, Shi HJ, Liu JY, Wang ZH, Chen LQ (2007) New concept of surface modification to LiCoO2. J Power Sources 174:328–334

    Article  CAS  Google Scholar 

  22. Kosova NV, Devyatkina ET (2007) Comparative study of LiCoO2 surface modified with different oxides. J Power Sources 174:959–964

    Article  CAS  Google Scholar 

  23. Hudaya CH, Park JH, Lee JK, Choi WC (2014) SnO2-coated LiCoO2 cathode material for high-voltage applications in lithium-ion batteries. Solid State Ionics 256:89–92

    Article  CAS  Google Scholar 

  24. Hwang BJ, Chen CY, Cheng MY, Santhanam R, Ragavendran K (2010) Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region. J Power Sources 195:4255–4265

    Article  CAS  Google Scholar 

  25. Kannan AM, Rabenberg L, Manthiram A (2003) High capacity surface-modified LiCoO2 cathodes for Lithium-ion batteries. Electrochem Solid-State Lett 6:16–18

    Article  CAS  Google Scholar 

  26. Chen ZH, Dahn JR (2004) Improving the capacity retention of LiCoO2 cycled to 4.5 V by heat-treatment. Electrochem Solid-State Lett 7:11–14

    Article  CAS  Google Scholar 

  27. Zuo DX, Tian GL, Chen DA, Shen HY, Lv CJ, Shu KY, Zhou YF (2015) Comparative study of Al2O3-coated LiCoO2 electrode derived from different Al precursors: uniformity, microstructure and electrochemical properties. Electrochemical Acta. 178:447–457

    Article  CAS  Google Scholar 

  28. Soroosh SA, Fernando AS, Tara F, Mohammad A, Yifei Y, Ramasubramonian D, Ramin R, Song B, Bi XX, Amine K, Lu J, Salehi-Khojin A, Balbuena PB, Reza SY (2019) Anti-oxygen leaking LiCoO2. Adv Functional Materials

  29. Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W (2011) Crystal chemistry and stability of Li7La3Zr2O12 garnet. Inorg Chem 50(3):1089–1097

    Article  CAS  PubMed  Google Scholar 

  30. Jin Y, McGinn PJ (2011) Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J Power Sources 196:8683–8687

    Article  CAS  Google Scholar 

  31. Myung ST, Maglia F, Park KJ, Yoon CS, Lamp P, Kim SJ, Sun YK (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achivements and perspectives. ACS Energy Lett 2:196–223

    Article  CAS  Google Scholar 

  32. Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou SX, Guo Z, Cho J (2017) Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Energy Mater 7:1601507

    Article  CAS  Google Scholar 

  33. Dong T, Zhang J, Xu G, Chai J, Du H, Wang L, Wen H, Zang X, Du A, Jia Q, Zhou X, Cui G (2018) A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ Sci 5:1197–1203

    Article  Google Scholar 

  34. Nelson KJ, Harlow JE, Dahn JR (2018) A comparison of NMC/graphite pouch cells and commercially Avaliable LiCoO2/graphite pouch cells tested to high potential. Electrochemical Society 165:456–462

    Article  CAS  Google Scholar 

  35. Ceder G, Van der VA (1999) Phase diagrams of lithium transition metal oxides investigations from first principles. Electrochemical Acta. 45:131–150

    Article  CAS  Google Scholar 

  36. Reed J, Ceder G, Van Der VA (2001) Layered-to-spinel phase transition in LixMnO2. Electrochem Solid-State Lett 6:78–81

    Article  Google Scholar 

  37. Jalem R, Mochiduki Y, Nobuhara K, Nakayama M, Nogami M (2012) Global minimum structure search in LixCoO2 composition using a hybrid evolutionary algorithm. Phys Chem Chem Phys 37:13095–13100

    Article  CAS  Google Scholar 

  38. Jiang YY, Qin CD, Yan PF, Sui ML (2019) Origins of capacity and voltage fading of LiCoO2 upon high voltage cycling. J Mater Chem 7:20824–20831

    Article  CAS  Google Scholar 

  39. Nobili F, Croce F, Tossici R, Meschini I, Reale P, Marassi R (2012) Sol–gel synthesis and electrochemical characterization of Mg/Zr-doped LiCoO2 cathodes for Li-ion batteries. J Power Sources 197:276–284

    Article  CAS  Google Scholar 

  40. Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M, Umeda M, Uchida I (2001) Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J Electrochem Soc. 148:422

    Article  Google Scholar 

  41. Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L (1999) Solid-state electrochemical kinetics of Li-ion intercalation into Li1 − xCoO2: simultaneous application of Electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc 146:1279

    Article  CAS  Google Scholar 

  42. Park JS, Mane AU, Elam JW, Croy R (2015) Amorphous metal fluoride passivation coatings prepared by atomic layer deposition on LiCoO2 for Li-ion batteries. Chem Mater 27:1917–1920

    Article  CAS  Google Scholar 

  43. Myung ST, Komaba S, Hirosaki N, Hosoya K, Kumagai N (2005) Improvement of structural integrity and battery performance of LiNi0.5Mn0.5O2 by Al and Ti doping. J Power Sources 146:645–649

    Article  CAS  Google Scholar 

  44. Arifin M, Rus YB, Aimon AH, Iskandar F, Winata T, Abdullah M, Khairurrijal K (2017) Composited reduced graphene oxide into LiFePO4/Li2SiO3 and its electrochemical impedance spectroscopy properties. Mater Res Express 4:034005

    Article  CAS  Google Scholar 

  45. Fu C, Li G, Luo D, Zheng J, Li L, Mater J (2014) Gel-combustion synthesis of Li1.2Mn0.4Co0.4O2 composites with a high capacity and superior rate capability for lithium-ion batteries. J Mater Chem 2:1471–1483

    Article  CAS  Google Scholar 

  46. Ahn J, Yoon S, Jung SG, Yim JH, Cho KY, Mater J (2017) A conductive thin layer on prepared positive electrodes by vapour reaction printing for high-performance lithium-ion batteries. J Mater Chem 5:21214–21222

    Article  CAS  Google Scholar 

  47. Ren J, Li R, Liu Y, Cheng Y, Mu D, Zheng R, Liu J, Dai C (2012) The impact of aluminum impurity on the regenerated lithium nickel cobalt manganese oxide cathode materials from spent LIBs. New J Chem 85:411–422

    Google Scholar 

  48. Lin J, Mu D, Jin Y, Wu B, Ma Y, Wu F (2013) Li-rich layered composite Li [Li0.2Ni0.2Mn0.6] O2 synthesized by a novel approach as cathode material for lithium ion battery. J Power Sources 230:76–80

    Article  CAS  Google Scholar 

  49. He Z, Ping J, Yi Z, Peng C, Shen C, Liu J (2017) Optimally designed interface of lithium rich layered oxides for lithium ion battery. J Alloys Compd 708:1038–1045

    Article  CAS  Google Scholar 

  50. Wang L, Zhao J, He X, Gao J, Li J, Wan C, Jiang C (2012) Electrochemical impedance spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O 2 for Li-ion batteries. Int J Electrochem Sci 7:345–353

    CAS  Google Scholar 

  51. Van der VA, Ceder G (2001) Lithium diffusion mechanisms in layered intercalation compounds. J Power Sources 97-98:529–531

    Article  Google Scholar 

  52. Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L (1999) Solid-state electrochemical kinetics of li-ion intercalation into Li1-xCoO2: simulation application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc 146:1279–1289

    Article  CAS  Google Scholar 

  53. Jang YI, Neudecker BJ, Dudney N (2001) Lithium diffusion in LixCoO2 (0.45 < x < 0.7) intercalation cathodes. Electrochemical Solid-State Lett 4:74–77

    Article  Google Scholar 

  54. Dai X, Zhou A, Xu J, Lu Y, Wang L, Fan C, Li J (2016) Extending the high-voltage capacity of LiCoO2 cathode by direct coating of the composite electrode with Li2CO3 via magnetron sputtering. Chem Soc 120:422–430

    CAS  Google Scholar 

  55. Qiu X, Zhuang Q, Zhang Q, Cao R (2012) Electrochemical and electronic properties of LiCoO2 cathode investigated by galvanostatic cycling and EIS. Phys Chem Chem Phys 14(8):2617–2630

    Article  CAS  PubMed  Google Scholar 

  56. Jung YS, Cavanagh AS, Dillon AC, Groner MD, George SM, Lee S (2010) Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. J Electrochem Soc 157:75

    Article  CAS  Google Scholar 

  57. Edstr K, Gustafsson T, Thomas JO (2004) The cathode–electrolyte interface in the Li-ion battery. Electrochemical Acta. 50:397–403

    Article  CAS  Google Scholar 

  58. Seong MW, Yoon K, Lee HM, Jung SK, Kang K (2019) Unveiling the intrinsic cycle reversibility of a LiCoO2 electrode at 4.8-V cutoff voltage through subtractive surface modification for lithium ion batteries. Nano Lett 19(1):29–37

    Article  CAS  PubMed  Google Scholar 

  59. Macneil DD, Dahn JR (2001) The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2. J Electrochem Soc. 148:1205–1210

    Article  Google Scholar 

  60. Leising RA, Palazzo MJ, Takeuchi ES, Takeuchi K (2001) Abuse testing of lithium-ion batteries: characterization of the overcharge reaction of LiCoO2/graphite cells. J Electrochem Soc. 148:838

    Article  Google Scholar 

  61. Baba Y, Okada S, Yamaki J (2002) Thermal stability of LixCoO2 cathode for lithium ion battery. Solid State Ionics 148:311

    Article  CAS  Google Scholar 

  62. Choi KH, Jeon JH, Park HK, Lee SM (2010) Electrochemical performance and thermal stability of LiCoO2 cathodes surface-modified with a sputtered thin film of lithium phosphorus oxynitride. J Power Sources 195:8317–8321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial and technical support from by the Micro/Nano Science and Technology of National Formosa University, Industrial Technology Research Institute, and the Ministry of Science and Technology of the Republic of China (MOST 107-2635-E-150-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiu-Fen Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, HL., Lin, HF., Yang, YC. et al. Modification of LiCoO2 through rough coating with lithium lanthanum zirconium tantalum oxide for high-voltage performance in lithium ion batteries. J Solid State Electrochem 25, 105–115 (2021). https://doi.org/10.1007/s10008-020-04529-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04529-x

Keywords

Navigation