Skip to main content

Advertisement

Log in

Ultrafast microwave manufacturing of MoP/MoO2/carbon nanotube arrays for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We proposed the synthesis of MoP/MoO2/carbon nanotube (MoP/MoO2/CNT) through a simple and ultrafast microwave strategy. After phosphating, the conductivity and electrochemical activity of the nanocomposites were significantly increased, and charge storage was accelerated. The MoP/MoO2/CNT electrode was a novel supercapacitor electrode material with a specific capacitance of up to 447.6 F g−1 at a current density of 1 A g−1, maintaining a stable cycle life at 86.5% of the initial capacitance after 10,000 cycles. Moreover, the asymmetric supercapacitor (ASC) with MoP/MoO2/CNT and AC (activated carbon) are a positive electrode and negative electrode, respectively, with an energy density of 31.6 Wh kg−1 and a power density of 190 W kg−1. The MoP/MoO2/CNT nanocomposite was a potential electrode material for future applications due to its outstanding properties, especially in the field of industrial convenient and rapid synthesis of electrode materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shafi PM, Dhanabal R, Chithambararaj A, Velmathi S, Bose AC (2017) alpha-MnO2/h-MoO3 hybrid material for high performance supercapacitor electrode and photocatalyst. ACS Sustain Chem Eng 5(6):4757–4770

    CAS  Google Scholar 

  2. Hsu FH, Wu TM (2017) Facile synthesis of polypyrrole/carbon-coated MoO3 nanoparticle/graphene nanoribbon nanocomposite with high-capacitance applied in supercapacitor electrode. J Mater Sci Mater Electron 29(1):382–391

    Google Scholar 

  3. Feng X, Chen N, Zhou J, Li Y, Huang Z, Zhang L, Ma Y, Wang L, Yan X (2015) Facile synthesis of shape controlled graphene–polyaniline composites for high performance supercapacitor electrode materials. New J Chem 39(3):2261–2268

    CAS  Google Scholar 

  4. Noh J, Yoon CM, Kim YK, Jang J (2017) High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbonfiber/MoO3. Carbon 116:470–478

    CAS  Google Scholar 

  5. Wang X, Sun PP, Qin JW, Wang JQ, Xiao Y, Cao MH (2016) A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries. Nanoscale 8(19):10330–10338

    CAS  PubMed  Google Scholar 

  6. Zhang HX, Liu Y, Jiang H, Deng ZN, Liu HL, Li CZ (2019) Macroporous MoS2/carbon hybrid film with superior ion/electron conductivity for superhigh areal capacity Li-ion batteries. Chem Eng Sci 207:611–618

    CAS  Google Scholar 

  7. Thakur AK, Majumder M, Choudhary RB, Singh SB (2018) MoS2 flakes integrated with boron and nitrogen-doped carbon: striking gravimetric and volumetric capacitive performance for supercapacitor applications. J Power Sources 402:163–173

    CAS  Google Scholar 

  8. Zhang SP, Song XZ, Liu SH, Sun FF, Liu GC, Tan ZQ (2019) Template-assisted synthesized MoS2/polyaniline hollow microsphere electrode for high performance supercapacitors. Electrochim Acta 312:1–10

    CAS  Google Scholar 

  9. Tian YR, Du HS, Zhang MM, Zheng YY, Guo QP, Zhang HP, Luo JJ, Zhang XY (2019) Microwave synthesis of MoS2/MoO2@CNT nanocomposites with excellent cycle stability for supercapacitor electrodes. J Mater Chem C 7(31):9545–9555

    CAS  Google Scholar 

  10. Wu ZX, Wang J, Xia KD, Lei W, Liu X, Wang DL (2018) MoS2-MoP heterostructured nanosheets on polymer-derived carbon as an electrocatalyst for hydrogen evolution reaction. J Mater Chem A 6(2):616–622

    CAS  Google Scholar 

  11. Wang JQ, Xiao Y, Cao MH (2016) A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries. Nanoscale 8(19):10330–10338

    CAS  PubMed  Google Scholar 

  12. Feng D, Pan XX, Xia QY, Qin JH, Zhang Y, Chen XM (2020) Metallic MoS2 nanosphere electrode for aqueous symmetric supercapacitors with high energy and power densities. J Mater Sci 55(2):713–723

    CAS  Google Scholar 

  13. Li X, Elshahawy AM, Guan C, Wang J (2017) Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39):1701530

    Google Scholar 

  14. Wang X, Kim HM, Xiao Y, Sun YK (2016) Nanostructured metal phosphide-based materials for electrochemical energy storage. J Mater Chem A 4(39):14915–14931

    CAS  Google Scholar 

  15. Xing ZC, Liu Q, Asiri AM, Sun XP (2014) Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv Mater 26(32):5702–5707

    CAS  PubMed  Google Scholar 

  16. Yang X, Li Q, Wang HJ, Feng J, Zhang M, Yuan R, Chai YQ (2018) Preparation of porous MoP-C microspheres without a hydrothermal process as a high capacity anode for lithium ion batteries. Inorg Chem Front 5(6):1432–1437

    CAS  Google Scholar 

  17. Yin YY, Fan LS, Zhang Y, Liu NN, Zhang NQ, Sun KN (2019) MoP hollow nanospheres encapsulated in 3D reduced graphene oxide networks as high rate and ultralong cycle performance anodes for sodium-ion batteries. Nanoscale 11(15):7129–7134

    CAS  PubMed  Google Scholar 

  18. Li JS, Wang XR, Li JY, Zhang S, Sha JQ, Liu GD, Tang B (2018) Pomegranate-like molybdenum phosphide@phosphorus-doped carbon nanospheres coupled with carbon nanotubes for efficient hydrogen evolution reaction. Carbon 139:234–240

    CAS  Google Scholar 

  19. Wang YQ, Sui XL, Zhao L, Huang GS, Gu DM, Wang ZB (2019) Ultrathin graphitic carbon coated molybdenum phosphide as noble-metal-free electrocatalyst for hydrogen evolution. Chemistryselect 4(3):846–852

    CAS  Google Scholar 

  20. Han WF, Li XL, Liu B, Li LC, Tang HD, Li Y, Lu CS, Li XN (2019) Microwave assisted combustion of phytic acid for the preparation of Ni2P@C as a robust catalyst for hydrodechlorination. Chem Commun 55(63):9279–9282

    CAS  Google Scholar 

  21. Yang X, Tian YR, Sarwar S, Zhang MM, Zhang HP, Luo JJ, Zhang XY (2019) Comparative evaluation of PPyNF/CoOx and PPyNT/CoOx nanocomposites as battery-type supercapacitor materials via a facile and low-cost microwave synthesis approach. Electrochim Acta 311:230–243

    CAS  Google Scholar 

  22. Zhang L, Du WY, Nautiyal A, Liu Z, Zhang XY (2018) Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Sci China Mater 61:303–352

    CAS  Google Scholar 

  23. Xiao P, Sk MA, Thia L, Ge XM, Lim RJ, Wang JY, Lim KH, Wang X (2014) Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci 7(8):2624–2629

    CAS  Google Scholar 

  24. Wang DZ, Duan QF, Wu ZZ (2019) Facile synthesis of MoP/MoO2 heterostructures for efficient hydrogen generation. Mater Lett 241:227–230

    CAS  Google Scholar 

  25. Liu Z, Yang S, Sun B, Chang X, Zheng J, Li X (2018) A peapod-like CoP@C nanostructure from phosphorization in a low temperature molten salt for high-performance lithium-ion batteries. Angew Chem 130(32):10344–10348

    Google Scholar 

  26. Huang ZD, Hou HS, Wang C, Li SM, Zhang Y, Ji XB (2017) Molybdenum phosphide: a conversion-type anode for ultralong-life sodium-ion batteries. Chem Mater 29(17):7313–7322

    CAS  Google Scholar 

  27. Zhang YD, Lin BP, Sun Y, Han P, Wang JC, Ding XJ, Zhang XQ, Yang H (2016) MoO2@cu@C composites prepared by using polyoxometalates@metal-organic frameworks as template for all-solid-state flexible supercapacitor. Electrochim Acta 188:490–498

    CAS  Google Scholar 

  28. Hou SJ, Xu XT, Wang M, Xu YQ, Lu T, Yao YF, Pan LK (2017) Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. J Mater Chem A 5(36):19054–19061

    CAS  Google Scholar 

  29. Lou PL, Cui ZH, Jia ZQ, Sun JY, Tan YB, Guo XX (2017) Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano 11(4):3705–3715

    CAS  PubMed  Google Scholar 

  30. Sun L, Zhang Y, Zhang DY, Zhang YH (2017) Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries. Nanoscale 9(46):18552–18560

    CAS  PubMed  Google Scholar 

  31. Xu YL, Peng B, Mulder FM (2018) A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@graphene nanocomposite. Adv Energy Mater 8(3):170184

    Google Scholar 

  32. Ding YL, Alias H, Wen DS, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49(1):240–250

    CAS  Google Scholar 

  33. Guo SD (2017) Anisotropic lattice thermal conductivity in three-fold degeneracy topological semimetal MoP: a first-principles study. J Phys Condens Matter 29(43):435704

    PubMed  Google Scholar 

  34. Hu XL, Zhang W, Liu XX, Mei YN, Huang Y (2015) Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 44(8):2376–2404

    CAS  PubMed  Google Scholar 

  35. Yuksel R, Coskun S, Unalan HE (2016) Coaxial silver nanowire network core molybdenum oxide shell supercapacitor electrodes. Electrochim Acta 193:39–44

    CAS  Google Scholar 

  36. Oyedotun KO, Madito MJ, Momodu DY, Mirghni AA, Masikhwa TM, Manyala N (2018) Synthesis of ternary NiCo-MnO2 nanocomposite and its application as a novel high energy supercapattery device. Chem Eng J 335:416–433

    CAS  Google Scholar 

  37. Zhang C, Hatzell KB, Boota M, Dyatkin B, Beidaghi M, Long D, Qiao W, Kumbur EC, Gogotsi Y (2014) Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes. Carbon 77:155–164

    CAS  Google Scholar 

  38. Du PC, Wei WL, Liu D, Kang HX, Liu C, Liu P (2018) Fabrication of hierarchical MoO3–PPy core–shell nanobelts and “worm-like” MWNTs–MnO2 core–shell materials for high-performance asymmetric supercapacitor. J Mater Sci 53(7):5255–5269

    CAS  Google Scholar 

  39. Pujari RB, Lokhande VC, Kumbhar VS, Chodankar NR, Lokhande CD (2016) Hexagonal microrods architectured MoO3 thin film for supercapacitor application. J Mater Sci Mater Electron 27(4):3312–3317

    CAS  Google Scholar 

  40. Barzegar F, Bello A, Momodu DY, Dangbegnon JK, Taghizadeh F, Madito MJ, Masikhwa TM, Manyala N (2015) Asymmetric supercapacitor based on an alpha-MoO3 cathode and porous activated carbon anodematerials. RSC Adv 5(47):37462–37468

    CAS  Google Scholar 

  41. Jin YH, Zhao CC, Jiang QL, Ji CW (2018) Hierarchically mesoporous micro/nanostructured CoP nanowire electrodes for enhanced performance supercapacitors. Colloids Surf A Physicochem Eng Asp 553:58–65

    CAS  Google Scholar 

  42. Wang WW, Zhang L, Xu GC, Song HJ, Yang LF, Zhang C, Xu JL, Jia DZ (2018) Structure-designed synthesis of CoP microcubes from metal-organic frameworks with enhanced supercapacitor properties. Inorg Chem 57(16):10287–10294

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors would like to thank the National Natural Science Foundation of China (21306124) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jujie Luo or Xinyu Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 211 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Sarwar, S., Zheng, Y. et al. Ultrafast microwave manufacturing of MoP/MoO2/carbon nanotube arrays for high-performance supercapacitors. J Solid State Electrochem 24, 809–819 (2020). https://doi.org/10.1007/s10008-020-04524-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04524-2

Navigation