Skip to main content

Advertisement

Log in

Controlled nanosheet morphology of titanium carbide Ti3C2Tx MXene via drying methods and its electrochemical analysis

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The different temperature drying processes were carried out at −60 °C, 15 °C, and 60 °C to control the nanosheet morphology of MXene matrix. The MXene electrode prepared at −60 °C (denoted as LT-Ti3C2Tx) produced more nanosheet arrays than those with drying temperatures of 15 °C and 60 °C (denoted as RT-Ti3C2Tx and HT-Ti3C2Tx MXene electrodes, respectively). The results of BET and electrochemical measurements show that the specific surface area and capacitance initially decrease and then increase with the change in nanosheet layers in MXene. Among these prepared electrodes, LT-Ti3C2Tx, with a well-controlled nanosheet array, showed outstanding specific capacitance (Cs) of 467.4 F g−1 at current density of 0.5 A g−1, and 98.13% stability after 5000 cycles. Furthermore, an LT-Ti3C2Tx // LT-Ti3C2Tx symmetric supercapacitor device (SSD) was assembled, employing the LT-Ti3C2Tx with a well-controlled nanosheet acting as both anode and cathode. The SSD exhibited high energy density of 5.67 Wh kg−1 at power density of 589.09 W kg−1, and long cycle life electrochemical stability of 99.9% after 5000 cycles. These promising results show that MXene electrodes prepared by low-temperature drying (i.e. –60 °C) may be useful for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH (2017) Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today 20(3):116–130

    Article  CAS  Google Scholar 

  2. Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F (2011) 2D materials: to graphene and beyond. Nanoscale 3(1):20–30

    Article  CAS  Google Scholar 

  3. Seh ZW, Fredrickson KD, Anasori B, Kibsgaard J, Strickler AL, Lukatskaya MR, Gogotsi Y, Jaramillo TF, Vojvodic A (2016) Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett 1(3):589–594

    Article  CAS  Google Scholar 

  4. Cao MS, Cai YZ, He P, Shu JC, Cao WQ, Yuan J (2019) 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem Eng J 359:1265–1302

    Article  CAS  Google Scholar 

  5. Li C, Zhang X, Wang K, Sun X, Ma Y (2019) Accordion-like titanium carbide (MXene) with high crystallinity as fast intercalative anode for high-rate lithium-ion capacitors. Chinese Chem Lett. https://doi.org/10.1016/j.cclet.2019.09.056

  6. Dong Y, Zheng S, Qin J, Zhao X, Shi H, Wang X, Chen J, Wu ZS (2018) All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 12(3):2381–2388

    Article  CAS  Google Scholar 

  7. Cao M, Wang F, Wang L, Wu W, Lv W, Zhu J (2017) Room temperature oxidation of Ti3C2 MXene for supercapacitor electrodes. J Electrochem Soc 164(14):A3933–A3942

    Article  CAS  Google Scholar 

  8. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW (2014) Conductive two dimensional titanium carbide "clay" with high volumetric capacitance. Nature 516:78–81

    Article  CAS  Google Scholar 

  9. Han J, Wang K, Liu W, Li C, Sun X, Zhang X, An Y, Yi S, Ma Y (2018) Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale 10(27):13083–13091

    Article  CAS  Google Scholar 

  10. Wang Q, Zhang Z, Zhang Z, Zhou X, Ma G (2018) Facile synthesis of MXene/MnO2 composite with high specific capacitance. J Solid State Electrochem 23(2):361–365

    Article  Google Scholar 

  11. Kumar KS, Choudhary N, Jung Y, Thomas J (2018) Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett 3(2):482–495

    Article  CAS  Google Scholar 

  12. Ran J, Gao G, Li FT, Ma TY, Du A, Qiao SZ (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:1–10

    Article  CAS  Google Scholar 

  13. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2(2):1–27

    Article  Google Scholar 

  14. Yi F, Ren H, Shan J, Sun X, Wei D, Liu Z (2018) Wearable energy sources based on 2D materials. Chem Soc Rev 47(9):3152–3188

    Article  CAS  Google Scholar 

  15. Shen BS, Wang H, Wu LJ, Guo RS, Huang Q, Yan XB (2016) All-solid-state flexible microsupercapacitor based on two-dimensional titanium carbide. Chinese Chem Lett 27(10):1586–1591

    Article  CAS  Google Scholar 

  16. Maria OM, Lukatskaya R, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505

    Article  Google Scholar 

  17. Xia QX, Shinde NM, Yun JM, Zhang T, Mane RS, Mathur S, Kim KH (2018) Bismuth oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochim Acta 271:351–360

    Article  CAS  Google Scholar 

  18. Li J, Yuan X, Lin C, Yang Y, Xu L, Du X, Xie J, Lin J, Sun J (2017) Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv Energy Mater 7(15):1–8

    Google Scholar 

  19. Melchior SA, Raju K, Ike IS, Erasmus RM, Kabongo G, Sigalas I, Iyuke SE, Ozoemena KI (2018) High-voltage symmetric supercapacitor based on 2D titanium carbide (MXene, Ti2CTx)/carbon nanosphere composites in a neutral aqueous electrolyte. J Electrochem Soc 165(3):A501–A511

    Article  CAS  Google Scholar 

  20. Shinde NM, Xia QX, Yun JM, Singh S, Mane RS, Kim KH (2017) A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device. Dalton T 46(20):6601–6611

    Article  CAS  Google Scholar 

  21. Jiang X, Zhu T, Kodama T, Raghunathan N, Alexeenko A, Peroulis D (2018) Multi-point wireless temperature sensing system for monitoring pharmaceutical lyophilization. Front Chem 6:288

    Article  Google Scholar 

  22. Lin Z, Barbara D, Taberna PL, Van Aken KL, Anasori B, Gogotsi Y, Simon P (2016) Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J Power Sources 326:575–579

    Article  CAS  Google Scholar 

  23. Fan Z, Wang Y, Xie Z, Wang D, Yuan Y, Kang H, Su B, Cheng Z, Liu Y (2018) Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv Sci (Weinh) 5(10):1–11

    Google Scholar 

  24. Xia QX, Fu J, Yun JM, Mane RS, Kim KH (2017) High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Adv 7(18):11000–11011

    Article  CAS  Google Scholar 

  25. Liang X, Garsuch A, Nazar LF (2015) Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew Chem Int Ed Engl 54(13):3907–3911

    Article  CAS  Google Scholar 

  26. Ottakam Thotiyl MM, Freunberger SA, Peng Z, Chen Y, Liu Z, Bruce PG (2013) A stable cathode for the aprotic Li-O2 battery. Nat Mater 12(11):1050–1056

    Article  CAS  Google Scholar 

  27. Peng C, Yang X, Li Y, Yu H, Wang H, Peng F (2016) Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Appl Mater Inter 8(9):6051–6060

    Article  CAS  Google Scholar 

  28. Luo Y, Chen GF, Ding L, Chen X, Ding LX, Wang H (2019) Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 3(1):279–289

    Article  CAS  Google Scholar 

  29. Shinde N, Shinde P, Xia QX, Yun JM, Mane R, Kim KH (2019) Electrocatalytic water splitting through the NixSy self-grown superstructures obtained via a wet chemical sulfurization process. ACS Omega 4(4):6486–6491

    Article  CAS  Google Scholar 

  30. Liu G, Shen J, Liu Q, Liu G, Xiong J, Yang J, Jin W (2018) Ultrathin two-dimensional MXene membrane for pervaporation desalination. J Membrane Sci 548:548–558

    Article  CAS  Google Scholar 

  31. Tang Y, Zhu J, Yang C, Wang F (2016) Enhanced capacitive performance based on diverse layered structure of two-dimensional Ti3C2 MXene with long etching time. J Electrochem Soc 163(9):A1975–A1975

    Article  CAS  Google Scholar 

  32. Su X, Zhang J, Mu H, Zhao J, Wang Z, Zhao Z, Han C, Ye Z (2018) Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene. J Alloy Compd 752:32–39

    Article  CAS  Google Scholar 

  33. Badwal SPS, Giddey SS, Munnings C, Bhatt AI, Hollenkamp AF (2014) Emerging electrochemical energy conversion and storage technologies. Frontiers i Chem 79(2):1–28

    Google Scholar 

  34. Fan Z, Wang Y, Xie Z, Xu X, Yuan Y, Cheng Z, Liu Y (2018) A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale 10(20):9642–9652

    Article  CAS  Google Scholar 

  35. Wang X, Shi B, Fang Y, Rong F, Huang F, Que R, Shao M (2017) High capacitance and rate capability of a Ni3S2@CdS core–shell nanostructure supercapacitor. J Mater Chem A 5(15):7165–7172

    Article  Google Scholar 

  36. Jia X, Wu X, Liu B (2018) Formation of ZnCo2O4@MnO2 core-shell electrode materials for hybrid supercapacitor. Dalton T 47(43):15506–15511

    Article  CAS  Google Scholar 

  37. Rakhi RB, Ahmed B, Anjum D, Alshareef HN (2016) Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl Mater Inter 8(29):18806–18814

    Article  CAS  Google Scholar 

  38. Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, Liang C, Xia Y, Zhang J, Gan Y, Tao X (2017) Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11(3):2459–2469

    Article  CAS  Google Scholar 

  39. Liu Y, Wang W, Ying Y, Wang Y, Peng X (2015) Binder-free layered Ti3C2/CNTs nanocomposite anodes with enhanced capacity and long-cycle life for lithium-ion batteries. Dalton Trans 44(16):7123–7126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013M3A6B1078874). We would like to thank Editage (www.editage.co.kr) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myungchang Kang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Shinde, N.M., Lee, M. et al. Controlled nanosheet morphology of titanium carbide Ti3C2Tx MXene via drying methods and its electrochemical analysis. J Solid State Electrochem 24, 675–686 (2020). https://doi.org/10.1007/s10008-020-04495-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04495-4

Keywords

Navigation