Skip to main content
Log in

Graphene oxide/copper terephthalate composite as a sensing platform for nitrite quantification and its application to environmental samples

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A robust electrochemical sensing platform based on graphene oxide-copper terephthalate (GO/Cu-tpa) composite has been fabricated. The prepared composite was characterized through FTIR, XRD, SEM, and EDS techniques. The electrochemical characterization of the composite was studied after immobilizing the composite material as a thin film on the glassy carbon electrode through voltammetry techniques. The fabricated electrode exhibited an excellent electrocatalytic activity in the oxidation of nitrite. The sensor showed a linear response in the concentration range 5 – 625 μM with a detection limit of 0.3 μM and sensitivity of 0.86 ± 0.06 μA μM−1 cm−2. The electrochemical sensor was validated by measuring the trace level nitrite from water samples, and the results are in good agreement with the standard protocol.

Schematic representation of GO/Cu-terepthalate composite preparation and fabrication of nitrite sensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rosi NL, Eddaoudi M, Kim J, Keeffe OM, Yaghi OM (2002) Advances in the chemistry of metal organic frameworks. CrystEngComm 4(68):401–404

    CAS  Google Scholar 

  2. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal organic frameworks. Chem Rev 112(2):673–674

    CAS  PubMed  Google Scholar 

  3. Meek ST, Greathouse JA, Allendorf MD (2011) Metal organic frameworks: a rapidly growing class of versatile Nanoporous materials. Adv Mater 23(2):249–267

    CAS  PubMed  Google Scholar 

  4. Yi FY, Chen D, Wu MK, Han L, Jiang HL (2016) Chemical sensors based on metal organic frameworks. ChemPlusChem 81(8):675–690

    CAS  Google Scholar 

  5. Liu W, Yin XB (2016) Metal organic frameworks for electrochemical applications. TrAC Trends Anal Chem 75:86–96

    CAS  Google Scholar 

  6. Kempahanumakkagari S, Vellingiri K, Deep A, Kwon EE, Bolan N, Kim KH (2018) Metal organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 357:105–129

    CAS  Google Scholar 

  7. Domenech A, García H, Domenech Carbo MT, Llabres i Xamena F (2007) Electrochemistry of metal organic frameworks: a description from the voltammetry of microparticles approach. J Phys Chem C 111(37):13701–13711

    CAS  Google Scholar 

  8. Jiao S, Jin J, Wang L (2015) One-pot preparation of Au-RGO/PDDA nanocomposites and their application for nitrite sensing. Sens Actuators B Chem 208:36–42

    CAS  Google Scholar 

  9. Wang Z, Li M, Ye Y, Yang Y, Lu Y, Ma X, Zhang Z, Xiang S (2019) MOF-derived binary mixed carbon/metal oxide porous materials for constructing simultaneous determination of hydroquinone and catechol sensor. J Solid State Electrochem 23(1):81–89

    CAS  Google Scholar 

  10. Liu XW, Sun TJ, Hu JL, Wang SD (2016) Composites of metal organic frameworks and carbon based materials: preparations, functionalities and applications. J Mater Chem A 4(10):3584–3616

    CAS  Google Scholar 

  11. Jakszyn P, Gonzalez CA (2006) Nitrosamine and related food intake and gastric and oesophageal cancer risk: a systematic review of the epidemiological evidence. World J Gastroenterol 12(27):4296–4303

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rahman MS Handbook of food preservation, 2nd edn. CRC Press. Taylor and Francis Group, Boca Raton

  13. Vittozzi L (1992) Toxicology of nitrates and nitrites. Food Addit Contam 9(5):579–585

    CAS  PubMed  Google Scholar 

  14. Moorcroft MJ, Davis J, Compton RG (2001) Detection and determination of nitrate and nitrite: a review. Talanta 54(5):785–803

    CAS  PubMed  Google Scholar 

  15. Wang QH, Yu LJ, Liu Y, Lin L, Lu RG, Zhu JP, He L, Lu ZL (2017) Methods for the detection and determination of nitrite and nitrate: a review. Talanta 165:709–720

    CAS  PubMed  Google Scholar 

  16. Redepenning JG (1987) Chemically modified electrodes: a general overview. TrAC Trends Anal Chem 6(1):18–22

    CAS  Google Scholar 

  17. Raoof JB, Ojani R, Ramine M (2009) Voltammetric sensor for nitrite determination based on its electrocatalytic reduction at the surface of p-duroquinone modified carbon paste electrode. J Solid State Electrochem 13(9):1311–1319

    CAS  Google Scholar 

  18. Mani V, Wu TY, Chen SM (2014) Iron nanoparticles decorated graphene multiwalled carbon nanotubes nanocomposite modified glassy carbon electrode for the sensitive determination of nitrite. J Solid State Electrochem 18(4):1015–1023

    CAS  Google Scholar 

  19. Shahbakhsh M, Noroozifar M (2018) Copper polydopamine complex/multiwalled carbon nanotubes as novel modifier for simultaneous electrochemical determination of ascorbic acid, dopamine, acetaminophen, nitrite and xanthine. J Solid State Electrochem 22(10):3049–3057

    CAS  Google Scholar 

  20. Chen Q, Ai S, Fan H, Cai J, Ma Q, Zhu X, Yin H (2010) The immobilization of cytochrome c on MWNT PAMAM Chit nanocomposite incorporated with DNA biocomposite film modified glassy carbon electrode for the determination of nitrite. J Solid State Electrochem 14(9):1681–1688

    CAS  Google Scholar 

  21. Sonkar PK, Ganesan V (2015) Synthesis and characterization of silver nanoparticle-anchored amine-functionalized mesoporous silica for electrocatalytic determination of nitrite. J Solid State Electrochem 19(7):2107–2115

    CAS  Google Scholar 

  22. Zhang L, Wang L (2013) Poly(2-amino-5-(4-pyridinyl)-1, 3, 4-thiadiazole) film modified electrode for the simultaneous determinations of dopamine, uric acid and nitrite. J Solid State Electrochem 17(3):691–700

    CAS  Google Scholar 

  23. He Q, Gan T, Zheng D, Hu S (2010) Direct electrochemistry and electrocatalysis of nitrite based on nano-alumina-modified electrode. J Solid State Electrochem 14(6):1057–1064

    CAS  Google Scholar 

  24. Gligor D, Walcarius A (2014) Glassy carbon electrode modified with a film of poly(toluidine blue O) and carbon nanotubes for nitrite detection. J Solid State Electrochem 18(6):1519–1528

    CAS  Google Scholar 

  25. Gligor D, Cuibus F, Peipmann R, Bund A (2017) Novel amperometric sensors for nitrite detection using electrodes modified with PEDOT prepared in ionic liquids. J Solid State Electrochem 21(1):281–290

    CAS  Google Scholar 

  26. De Menezes EW, Nunes MR, Arenas LT, Dias SLP, Garcia ITS, Gushikem Y, Costa TMH, Benvenutti EV (2012) Gold nanoparticle/charged silsesquioxane films immobilized onto Al/SiO2 surface applied on the electrooxidation of nitrite. J Solid State Electrochem 16(12):3703–3713

    CAS  Google Scholar 

  27. Kamyabi MA, Asgari Z, Monfared HH (2010) Electrocatalytic oxidation of nitrite at a terpyridine manganese(II) complex modified carbon past electrode. J Solid State Electrochem 14(9):1547–1553

    CAS  Google Scholar 

  28. Yang C, Xu J, Hu S (2007) Development of a novel nitrite amperometric sensor based on poly(toluidine blue) film electrode. J Solid State Electrochem 11(4):514–520

    CAS  Google Scholar 

  29. Wang Y, Wu Y, Xie J, Hu X (2013) Metal organic framework modified carbon paste electrode for lead sensor. Sens Actuators B Chem 177:1161–1166

    CAS  Google Scholar 

  30. Song Y, Gong C, Su D, Shen Y, Song Y, Wang L (2016) A novel ascorbic acid electrochemical sensor based on spherical MOF-5 arrayed on a three-dimensional porous carbon electrode. Anal Methods 8(10):2290–2296

    CAS  Google Scholar 

  31. Hosseini H, Ahmar H, Dehghani A, Bagheri A, Fakhari AR, Amini MM (2013) Au-SH-SiO2 nanoparticles supported on metal-organic framework (Au-SH-SiO2@Cu-MOF) as a sensor for electrocatalytic oxidation and determination of hydrazine. Electrochim Acta 88:301–309

    CAS  Google Scholar 

  32. Yadav DK, Ganesan V, Sonkar PK, Gupta R, Rastogi PK (2016) Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene. Electrochim Acta 200:276–282

    CAS  Google Scholar 

  33. Chen Q, Li X, Min X, Cheng D, Zhou J, Li Y, Xie Z, Liu P, Cai W, Zhang C (2017) Determination of catechol and hydroquinone with high sensitivity using MOF graphene composites modified electrode. J Electroanal Chem 789:114–122

    CAS  Google Scholar 

  34. Arul P, John SA (2018) Size controlled synthesis of Ni-MOF using polyvinylpyrrolidone: new electrode material for the trace level determination of nitrobenzene. J Electroanal Chem 829:168–176

    CAS  Google Scholar 

  35. Chen H, Wu X, Lao C, Li Y, Yuan Q, Gan W (2019) MOF derived porous carbon modified rGO for simultaneous determination of hydroquinone and catechol. J Electroanal Chem 835:254–261

    CAS  Google Scholar 

  36. Sun D, Deng Q, Long J (2018) Highly sensitive electrochemical sensor for estradiol based on the signal amplification strategy of cu-BDC frameworks. J Solid State Electrochem 22(2):487–493

    CAS  Google Scholar 

  37. Yuan B, Zhang J, Zhang R, Shi H, Wang N, Li J, Ma F, Zhang D (2016) Cu-based metal organic framework as a novel sensing platform for the enhanced electro oxidation of nitrite. Sensors Actuators B Chem 222:632–637

    CAS  Google Scholar 

  38. Saraf M, Rajak R, Mobin SM (2016) A fascinating multitasking cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J Mater Chem A 4(42):16432–16445

    CAS  Google Scholar 

  39. Yadav DK, Ganesan V, Marken F, Gupta R, Sonkar PK (2016) Metal@MOF materials in electroanalysis: silver-enhanced oxidation reactivity towards nitrophenols adsorbed into a zinc metal organic framework Ag@MOF-5(Zn). Electrochim Acta 219:482–491

    CAS  Google Scholar 

  40. Li J, Xia J, Zhang F, Wang Z, Liu Q (2018) An electrochemical sensor based on copper-based metal-organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water. Talanta 181:80–86

    CAS  PubMed  Google Scholar 

  41. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    CAS  Google Scholar 

  42. Wang X, Wang Q, Wang Q, Gao F, Gao F, Yang Y, Guo H (2014) Highly dispersible and stable copper terephthalate metal organic framework graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl Mater Interfaces 6(14):11573–11580

    CAS  PubMed  Google Scholar 

  43. Zhang Y, Bo X, Luhana C, Wang H, Li M, Guo L (2013) Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability. Chem Commun 49(61):6885–6887

    CAS  Google Scholar 

  44. Domenech-Carbo A (2009) Electrochemistry of porous materials. CRC press

  45. Wang Y, Laborda E, Compton RG (2012) Electrochemical oxidation of nitrite: kinetic, mechanistic and analytical study by square wave voltammetry. J Electroanal Chem 670:56–61

    CAS  Google Scholar 

  46. Piela B, Wrona PK (2002) Oxidation of nitrites on solid electrodes: I. determination of the reaction mechanism on the pure electrode surface. J Electrochem Soc 149(2):E55–E63

    CAS  Google Scholar 

  47. Lovric M, Komorsky-Lovric S (1988) Square-wave voltammetry of an adsorbed reactant. J Electroanal Chem Interfacial Electrochem 248(2):239–253

    CAS  Google Scholar 

  48. O’Dea JJ, Ribes A, Osteryoung JG (1993) Square-wave voltammetry applied to the totally irreversible reduction of adsorbate. J Electroanal Chem 345(1):287–301

    Google Scholar 

  49. Kung CW, Li YS, Lee MH, Wang SY, Chiang WH, Ho KC (2016) In situ growth of porphyrinic metal–organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite. J Mater Chem A 4(7):10673–10682

    CAS  Google Scholar 

  50. Chen D, Jiang J, Du X (2016) Electrocatalytic oxidation of nitrite using metal-free nitrogen-doped reduced graphene oxide nanosheets for sensitive detection. Talanta 155:329–335

    CAS  PubMed  Google Scholar 

  51. Kung CW, Chang TH, Chou LY, Hupp JT, Farha OK, Ho KC (2015) Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochem Commun 58:51–56

    CAS  Google Scholar 

  52. Zhang S, Li B, Sheng Q, Zheng J (2016) Electrochemical sensor for sensitive determination of nitrite based on the CuS MWCNT nanocomposites. J Electroanal Chem 769:118–123

    CAS  Google Scholar 

  53. Suma BP, Adarakatti PS, Kempahanumakkagari SK, Malingappa P (2019) A new polyoxometalate/rGO/Pani composite modified electrode for electrochemical sensing of nitrite and its application to food and environmental samples. Mater Chem Phys 229:269–278

    CAS  Google Scholar 

  54. Patri SB, Adarakatti PS, Malingappa P (2019) Silver nanoparticles-chitosan composite embedded graphite screen-printed electrodes as a novel electrochemical platform in the measurement of trace level nitrite: application to milk powder samples. Curr Anal Chem 15(1):56–65

    CAS  Google Scholar 

  55. Baird RB, Rice EW, Eaton AD, Clesceri LS (2012) Standard methods for the examination of, water and waste water APHA, 22nd edn. American Water Works, Association WEF, Denver

    Google Scholar 

Download references

Funding

The authors acknowledge DST-SERB, New Delhi, India for the financial support and award of research fellowship to Mrs. Suma B P (Award No: EMR/2016/002466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pandurangappa M.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The graphene oxide/ copper terepthalate composite has been synthesized by a simple solvothermal route.

• The composite has been characterized by spectroscopic and electrochemical techniques.

• It has been used as a novel electrochemical sensing platform in the measurement of nitrite.

• The composite modified electrode showed a good linearity in the concentration range 5- 625 μM with a detection limit of 0.3 μM.

• The sensor has been successfully applied to real sample analysis and the results are in good agreement with the standard protocol results.

Electronic supplementary material

ESM 1

(DOCS 993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suma B P, Pandurangappa M Graphene oxide/copper terephthalate composite as a sensing platform for nitrite quantification and its application to environmental samples. J Solid State Electrochem 24, 69–79 (2020). https://doi.org/10.1007/s10008-019-04454-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04454-8

Navigation