Skip to main content
Log in

Understanding the electrochemical behavior of bulk-synthesized MgZn2 intermetallic compound in aqueous NaCl solutions as a function of pH

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior of a bulk-synthesized MgZn2 intermetallic compound in aerated 0.1 M NaCl solutions has been studied as a function of pH and applied potential using polarization techniques, electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and focused ion beam-transmission electron microscopy (FIB-TEM). The anodic activity of MgZn2 is seen to decrease with an increase in pH value. Polarization tests reveal two limiting current densities in pH 4 solution at relatively high and low potentials. At pH 12, passivity is observed with a lower limiting current density compared to those observed at pH 4. The corrosion film formed after potentiostatic polarization in the pH 4 solution is composed of a bilayer at a less negative potential and a single layer at a more negative potential. In the case of pH 12 solution, a protective compact bilayer film is formed irrespective of the potential within the passive zone. Overall, the corrosion mechanism of MgZn2 is by early dissolution of Mg leading to a Zn-enriched surface whose subsequent dissolution depends on the value of the applied potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andreatta F, Lohrengel MM, Terryn H, de Wit JHW (2003) Electrochim Acta 48(20–22):3239–3247

    Article  CAS  Google Scholar 

  2. Birbilis N, Buchheit RG (2005) J Electrochem Soc 152(4):B140–B151

    Article  CAS  Google Scholar 

  3. Birbilis N, Padgett BN, Buchheit RG (2005) Electrochim Acta 50(16-17):3536–3544

    Article  CAS  Google Scholar 

  4. Ramgopal T, Gouma PI, Frankel GS (2002) Corrosion 58(8):687–697

    Article  CAS  Google Scholar 

  5. Ramgopal T, Schmutz P, Frankel GS (2001) J Electrochem Soc 148(9):B348–B356

    Article  CAS  Google Scholar 

  6. Yoon Y, Buchheit RG (2005) Electrochem Solid St Lett 8(11):B65–B68

    Article  CAS  Google Scholar 

  7. Wloka J, Virtanen S (2008) Surf Interface Anal 40(8):1219–1225

    Article  CAS  Google Scholar 

  8. Diler E, Lescop B, Rioual S, Vien GN, Thierry D, Rouvellou B (2014) Corros Sci 79:83–88

    Article  CAS  Google Scholar 

  9. Diler E, Rioual S, Lescop B, Thierry D, Rouvellou B (2012) Corros Sci 65:178–186

    Article  CAS  Google Scholar 

  10. Birbilis N, King AD, Thomas S, Frankel GS, Scully JR (2014) Electrochim Acta 132:227–283

    Article  CAS  Google Scholar 

  11. Williams G, Birbilis N, McMurray HN (2013) Electrochem Commun 36:1–5

    Article  CAS  Google Scholar 

  12. Alsagabi S, Ninlachart J, Raja KS, Charit I (2016) J Mater Eng Perform 25(6):2364–2374

    Article  CAS  Google Scholar 

  13. Thomas S, Birbilis N, Venkatraman MS, Cole IS (2012) Corrosion 68:1–9

    Article  Google Scholar 

  14. Moon S-M, Pyun S-I (1999) J Solid State Electrochem 3(2):104–110

    Article  CAS  Google Scholar 

  15. Pyun S-I, Moon S-M (2000) J Solid State Electrochem 4(5):267–272

    Article  CAS  Google Scholar 

  16. Birbilis N, Cavanaugh MK, Buchheit RG (2006) Corros Sci 48(12):4202–4215

    Article  CAS  Google Scholar 

  17. Sun XY, Zhang B, Lin HQ, Zhou Y, Sun L, Wang JQ, Han EH, Ke W (2013) Corros Sci 77:103–112

    Article  CAS  Google Scholar 

  18. Suter T, Alkire RC (2001) J Electrochem Soc 148(1):B36–B42

    Article  CAS  Google Scholar 

  19. Diler E, Rouvellou B, Rioual S, Lescop B, Vien GN, Thierry D (2014) Corros Sci 87:111–117

    Article  CAS  Google Scholar 

  20. Fujimoto S, Kim W-S, Sato M, Son J-Y, Machida M, Jung K-T, Tsuchiya H (2015) J Solid State Electrochem 19(12):3521–3531

    Article  CAS  Google Scholar 

  21. Santamaria M, Di Franco F, Di Quarto F, Pisarek M, Zanna S, Marcus P (2015) J Solid State Electrochem 19(12):3511–3519

    Article  CAS  Google Scholar 

  22. Ghods P, Isgor OB, Carpenter GJC, Li J, McRae GA, Gu GP (2013) Cement Concrete Res 47:55–68

    Article  CAS  Google Scholar 

  23. Li J, Malis T, Dionne S (2006) Mater Charact 57(1):64–70

    Article  CAS  Google Scholar 

  24. Yang J, Yim CD, You BS (2016) J Electrochem Soc 163(8):C395–C401

    Article  CAS  Google Scholar 

  25. Yang J, Yim CD, You BS (2016) J Electrochem Soc 163(14):C839–C844

    Article  CAS  Google Scholar 

  26. Ikeuba AI, Zhang B, Wang J, Han E-H, Ke W, Okafor PC (2018) J Electrochem Soc 165(3):C180–C194

    Article  CAS  Google Scholar 

  27. Scendo M, Staszewska-Samson K (2017) Int J Electrochem Sci 12:5668–5691

    Article  CAS  Google Scholar 

  28. Shang X-L, Zhang B, Han E-H, Ke W (2011) Electrochim Acta 56(3):1417–1425

    Article  CAS  Google Scholar 

  29. Valandro LF, Neisser MP, Lopes AG, Scotti R, Andreatta OD, Bottino MA (2003) J Dent Res, vol 82, pp B344–B344

    Google Scholar 

  30. Kaesche H (2003) Corrosion of metals. Engineering Materials and Processes. Springer, New York

    Book  Google Scholar 

  31. Wang L, Shinohara T, Zhang BP (2010) Appl Surf Sci 256(20):5807–5812

    Article  CAS  Google Scholar 

  32. Zhang B, Zhou H-B, Han E-H, Ke W (2009) Electrochim Acta 54(26):6598–6608

    Article  CAS  Google Scholar 

  33. Santamaria M, Di Quarto F, Zanna S, Marcus P (2007) Electrochim Acta 53(3):1314–1324

    Article  CAS  Google Scholar 

  34. Yao HB, Li Y, Wee ATS (2000) Appl Surf Sci 158(1-2):112–119

    Article  CAS  Google Scholar 

  35. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  36. Ismail KM, Wood TK, Earthman JC (1999) Electrochim Acta 44(26):4685–4692

    Article  CAS  Google Scholar 

  37. Zheng ZJ, Gao Y, Gui Y, Zhu M (2014) J Solid State Electrochem 18(8):2201–2210

    Article  CAS  Google Scholar 

  38. Heakal FE-T, Fatayerji MZ (2010) J Solid State Electrochem 15:125–138

    Article  CAS  Google Scholar 

  39. Mahovic Poljacek S, Risovic D, Cigula T, Gojo M (2011) J Solid State Electrochem 16:1077–1089

    Article  CAS  Google Scholar 

  40. Moon S-M, Pyun S II (1998) J Solid State Electrochem 2(3):156–161

    Article  CAS  Google Scholar 

  41. Zerbino J, Gassa L (2003) J Solid State Electrochem 7(3):177–182

    Article  CAS  Google Scholar 

  42. Belkaid S, Ladjouzi MA, Hamdani S (2011) J Solid State Electrochem 15(3):525–537

    Article  CAS  Google Scholar 

  43. Jorcin JB, Orazem ME, Pebere N, Tribollet B (2006) Electrochim Acta 51(8-9):1473–1479

    Article  CAS  Google Scholar 

  44. Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Springer, New York

    Book  Google Scholar 

  45. Pyun S-I, Shin H-C, Lee J-W, Go J-Y (2012) Electrochemistry of insertion materials for hydrogen and lithium. In: Scholz F (ed) Monographs in electrochemistry. Springer, Berlin

    Google Scholar 

  46. Brug GJ, Van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) J Electroanal Chem 176(1-2):275–295

    Article  CAS  Google Scholar 

  47. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Electrochim Acta 55(21):6218–6227

    Article  CAS  Google Scholar 

  48. Ma H, Cheng X, Li G, Chen S, Quan Z, Zhao S, Niu L (2000) Corros Sci 42(10):1669–1683

    Article  CAS  Google Scholar 

  49. Wang W, Alfantazi A (2014) Electrochim Acta 131:79–88

    Article  CAS  Google Scholar 

  50. Lindsey AJ (1966) Pourbaix, M - Atlas of electrochemical equilibria in aqueous solutions. Chem Ind, London

    Google Scholar 

  51. Ghali E (2011) 2 - Activity and passivity of magnesium (Mg) and its alloys A2. In: Song G-L (ed) Corrosion of Magnesium Alloys. Woodhead Publishing, Cambridge

    Google Scholar 

  52. Ghali E, Dietzel W, Kainer KU (2004) J Mater Eng Perform 13(1):7–23

    Article  CAS  Google Scholar 

  53. Ikeuba AI, Okafor PC (2018) Pigm Resin Technol. https://doi.org/10.1108/prt-03-2018-0020

  54. Ikeuba AI, Okafor PC, Ekpe UJ, Ebenso EE (2013) Int J Electrochem Sci 8:7455–7467

    CAS  Google Scholar 

  55. Asmussen RM, Danaie M, Botton GA, Shoesmith DW (2013) Corros Sci 75:114–122

    Article  CAS  Google Scholar 

  56. Taheri M, Kish JR, Birbilis N, Danaie M, McNally EA, McDermid JR (2014) Electrochim Acta 116:396–403

    Article  CAS  Google Scholar 

  57. Atrens A, Dietzel W (2007) Adv Eng Mater 9(4):292–297

    Article  CAS  Google Scholar 

  58. Petty RL, Davidson AW, Kleinberg J (1954) J Am Chem Soc 76(2):363–366

    Article  CAS  Google Scholar 

  59. Shi Z, Jia JX, Atrens A (2012) Corros Sci 60:296–308

    Article  CAS  Google Scholar 

  60. Song G, Atrens A, John DS, Wu X, Nairn J (1997) Corros Sci 39(10-11):1981–2004

    Article  CAS  Google Scholar 

  61. Ralston KD, Williams G, Birbilis N (2012) Corrosion 68(6):507–517

    Article  CAS  Google Scholar 

  62. Williams G, McMurray HN (2008) J Electrochem Soc 155(7):C340–C349

    Article  CAS  Google Scholar 

  63. Isaacs HS, Adzic G, Jeffcoate CS (2000) Corrosion 56(10):971–978

    Article  CAS  Google Scholar 

  64. Shi HW, Tian ZH, Hu TH, Liu FC, Han EH, Taryba M, Lamaka SV (2014) Corros Sci 88:178–186

    Article  CAS  Google Scholar 

  65. Thomas S, Cole IS, Sridhar M, Birbilis N (2013) Electrochim Acta 97:192–201

    Article  CAS  Google Scholar 

  66. Zhao M-C, Liu M, Song G-L, Atrens A (2008) Corros Sci 50(11):3168–3178

    Article  CAS  Google Scholar 

  67. McCafferty E (2010) Thermodynamics of corrosion: Pourbaix diagrams. In: Introduction to corrosion science. Springer, New York. https://doi.org/10.1007/978-1-4419-0455-3_6

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51571201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeuba, A.I., Kou, F., Duan, H. et al. Understanding the electrochemical behavior of bulk-synthesized MgZn2 intermetallic compound in aqueous NaCl solutions as a function of pH. J Solid State Electrochem 23, 1165–1177 (2019). https://doi.org/10.1007/s10008-019-04210-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04210-y

Keywords

Navigation