Skip to main content
Log in

Analysis of discrete spectra of electrochemical noise of lithium power sources

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The Fourier, Daubechies, and Chebyshev transforms are used to analyze discrete spectra of electrochemical noise of lithium power sources under the open-circuit conditions. In the absence of trend of open-circuit voltage, all three approaches lead to similar estimates of intensity of discrete spectra of electrochemical noise of lithium power sources. A trend of open-circuit voltage has different effects on the Fourier, Daubechies, and Chebyshev spectra. The Fourier spectrum is most sensitive to a trend of open-circuit voltage; the Chebyshev spectrum is most resistant to the trend. The Daubechies spectrum occupies an intermediate position between the Fourier spectrum and the Chebyshev spectrum in the resistance to the trend of open-circuit voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheng YF, Luo JL, Wilmott M (2000) Spectral analysis of electrochemical noise with different transient shapes. Electrochim Acta 45(11):1763–1771

    Article  CAS  Google Scholar 

  2. Cottis RA (2001) Interpretation of electrochemical noise data. Corrosion 57(3):265–285

    Article  CAS  Google Scholar 

  3. Bosch RW, Cottis RA, Csecs K, Dorsch T, Dunbar L, Heyn A, Macak J (2014) Reliability of electrochemical noise measurements: results of round-robin testing on electrochemical noise. Electrochim Acta 120:379–389

    Article  CAS  Google Scholar 

  4. Giriga S, Mudali UK, Raju VR, Raj B (2005) Electrochemical noise technique for corrosion assessment-a review. Corros Rev 23(2–3):107–170

    CAS  Google Scholar 

  5. Huet F (2006) Electrochemical noise technique. In: Marcus P, Mansfeld F (eds) Analytical methods in corrosion science and engineering. Taylor & Francis Group, CRC Press, Boca Raton, p 508

    Google Scholar 

  6. Roberge PR, Halliop E, Farrington MD (1991) Monitoring voltage fluctuations for the characterization of lithium cells. J Power Sources 34(3):233–241

    Article  CAS  Google Scholar 

  7. Grafov BM, Kanevskii LS, Astafiev MG (2005) Noise characterization of surface processes of the Li/organic electrolyte interface. J Appl Electrochem 35(12):1271–1276

    Article  CAS  Google Scholar 

  8. Kanevskii LS, Grafov BM, Astafiev MG (2005) Dynamics of electrochemical noise of the lithium electrode in aprotic organic electrolytes. Russ J Electrochem 41(10):1091–1096

    Article  CAS  Google Scholar 

  9. Astafiev MG, Kanevskii LS, Grafov BM (2006) Electrochemical noise of a lithium electrode in organic electrolytes: a study by a correlation function method. Russ J Electrochem 42(5):523–530

    Article  CAS  Google Scholar 

  10. Martemianov S, Maillard F, Thomas A, Lagonotte P, Madier L (2016) Noise diagnostics of commercial Li-ion batteries using high-order moments. Russ J Electrochem 52:1120–1130

    Article  CAS  Google Scholar 

  11. Lee S, Kim J (2015) Discrete wavelet transform-based denoising technique for advanced state-of-charge estimator of a lithium-ion battery in electric vehicles. Energy 83:462–473

    Article  Google Scholar 

  12. Martemianov S, Adiutantov N, Evdokimov YK, Madier L, Maillard F, Thomas A (2015) New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries. J Solid State Electrochem 19(9):2803–2810

    Article  CAS  Google Scholar 

  13. Mansfeld F, Sun Z, Hsu CH, Nagiub A (2001) Concerning trend removal in electrochemical noise measurements. Corros Sci 43(2):341–352

    Article  CAS  Google Scholar 

  14. Bertocci U, Huet F, Nogueira RP, Rousseau P (2002) Drift removal procedures in the analysis of electrochemical noise. Corrosion 58(4):337–347

    Article  CAS  Google Scholar 

  15. Homborg AM, Tinga T, Zhang X, Van Westing EPM, Oonincx PJ, De Wit JHW, Mol JMC (2012) Time–frequency methods for trend removal in electrochemical noise data. Electrochim Acta 70:199–209

  16. Xia DH, Behnamian Y (2015) Electrochemical noise: a review of experimental setup, instrumentation and DC removal. Russ J Electrochem 51(7):593–601

    Article  CAS  Google Scholar 

  17. Vaseghi S (1996) Advanced signal processing and digital noise reduction. Wiley and B.G. Teubner, N.Y. Chapter 8

  18. Naidu PS (1996) Modern spectrum analysis of time series. CRC Press, New York

    Google Scholar 

  19. Rao SS (2017) A course in time series analysis, technical report. Texas A&M University, College Station

    Google Scholar 

  20. Schuster A (1898) On the investigation of hidden periodicities with application to supposed 26 day period of meteorological phenomena. Terr Magn 3(1):13–41

    Article  Google Scholar 

  21. Bartlett MS (1950) Periodogram analysis and continuous spectra. Biometrica 37(1–2):1–16

    Article  CAS  Google Scholar 

  22. Mallat S (1999) A wavelet tour of signal processing. Academic, New York

    Google Scholar 

  23. Nikiforov AV, Suslov SK, Uvarov VB (1991) Classical orthogonal polynomials of a discrete variable. Springer, Berlin

    Book  Google Scholar 

  24. Gogin N, Hirversalo M (2007) On generating function of discrete Chebyshev polynomials. Technical Report No. 819. Turku Centre for Computer Science, Turku

    Google Scholar 

  25. Astaf’ev MG, Kanevskii LS, Grafov BM (2007) Analyzing electrochemical noise with Chebyshev’s discrete polynomials. Russ J Electrochem 43(1):17–24

    Article  CAS  Google Scholar 

  26. Grafov BM, Dobrovol’skii YA, Davydov AD, Ukshe AE, Klyuev AL, Astaf’ev EA (2015) Electrochemical noise diagnostics: analysis of algorithm of orthogonal expansions. Russ J Electrochem 51(6):503–507

    Article  CAS  Google Scholar 

  27. Grafov B, Klyuev A, Davydov A, Lukovtsev V (2017) Chebyshev’s noise spectroscopy for testing electrochemical systems. Bulg Chem Commun 49:102–105

    Google Scholar 

  28. Grafov BM, Klyuev AL, Davydov AD (2018) Discrete version of Wiener-Khinchin theorem for Chebyshev’s spectrum of electrochemical noise. J Solid State Electrochem 22(6):1661–1667

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by the Russian Foundation for Basic Research, project no. 16-29-09375.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Grafov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyuev, A.L., Grafov, B.M., Davydov, A.D. et al. Analysis of discrete spectra of electrochemical noise of lithium power sources. J Solid State Electrochem 23, 497–502 (2019). https://doi.org/10.1007/s10008-018-4156-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4156-z

Keywords

Navigation