Skip to main content
Log in

Preparation of dendritic nanoporous Ni-NiO foam by electrochemical dealloying for use in high-performance supercapacitors

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper compared the applicability of nickel-copper and nickel-nickel oxide metallic foams as current collectors for supercapacitor. A comprehensive characterization of foams was presented and includes the analysis of their structural, chemical, and electrochemical properties. Several techniques such as structural characteristics and electrochemical methods were used to examine the surface morphology and surface chemical composition of these materials. The process was studied under well-defined experimental conditions using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge and discharge (GCD). The outcome of these experiments demonstrated that the Ni-NiO foam had a higher specific capacitance than Ni-Cu foam. The best specific capacitance for Ni-NiO foam was calculated to be 924 F/g at 1 A/g, which was higher than that obtained for Ni-Cu foam (536 F/g at 1 A/g). Ni-NiO foam maintained 81.8% of its specific capacitance at a current density of 20 A/g and after 3000 cycles, without significant loss of supercapacitor activity.

Schematic illustration of the fabrication process of Ni-NiO foam arrays on the copper substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Zhao X, Sánchez BM, Dobson PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3(3):839–855

    Article  CAS  PubMed  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  CAS  PubMed  Google Scholar 

  3. Shin HC, Dong J, Liu M (2003) Nanoporous structures prepared by an electrochemical deposition process. Adv Mater 15(19):1610–1614

    Article  CAS  Google Scholar 

  4. Nikolić ND, Popov KI, Pavlović LJ, Pavlović MG (2006) Morphologies of copper deposits obtained by the electrodeposition at high overpotentials. Surf Coat Technol 201(3-4):560–566

    Article  CAS  Google Scholar 

  5. Cherevko S, Xing X, Chung CH (2010) Electrodeposition of three-dimensional porous silver foams. Electrochem Commun 12(3):467–470

    Article  CAS  Google Scholar 

  6. Yang GM, Chen X, Li J, Guo Z, Liu JH, Huang XJ (2011) Bubble dynamic templated deposition of three-dimensional palladium nanostructure catalysts: approach to oxygen reduction using macro-, micro-, and nano-architectures on electrode surfaces. Electrochim Acta 56(19):6771–6778

    Article  CAS  Google Scholar 

  7. Cherevko S, Chung CH (2011) Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution. Electrochem Commun 13(1):16–19

    Article  CAS  Google Scholar 

  8. Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XWD (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22(21):4592–4597

    Article  CAS  Google Scholar 

  9. Zhuo K, Jeong MG, Chung CH (2013) Dendritic nanoporous nickel oxides for a supercapacitor prepared by a galvanic displacement reaction with chlorine ions as an accelerator. RSC Adv 3(31):12611–12615

    Article  CAS  Google Scholar 

  10. Lipson H (1979) Elements of X-ray diffraction. Contemp Phys 20(1):87–88

    Article  Google Scholar 

  11. Zhu X, Dai H, Hu J, Ding L, Jiang L (2012) Reduced graphene oxide–nickel oxide composite as high performance electrode materials for supercapacitors. J Power Sources 203:243–249

    Article  CAS  Google Scholar 

  12. Min S, Zhao C, Chen G, Qian X (2014) One-pot hydrothermal synthesis of reduced graphene oxide/Ni (OH)2 films on nickel foam for high performance supercapacitors. Electrochim Acta 115:155–164

    Article  CAS  Google Scholar 

  13. Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132(21):7472–7477

    Article  CAS  PubMed  Google Scholar 

  14. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211

    Article  CAS  PubMed  Google Scholar 

  15. Brousse T, Bélanger D, Long JW (2015) To be or not to be pseudocapacitive? J Electrochem Soc 162(5):A5185–A5189

    Article  CAS  Google Scholar 

  16. Lv L, Xu K, Wang C, Wan H, Ruan Y, Liu J, Zou R, Miao L, Ostrikov KK, Lan Y, Jiang J (2016) Intercalation of glucose in NiMn-layered double hydroxide nanosheets: an effective path way towards battery-type electrodes with enhanced performance. Electrochim Acta 216:35–43

    Article  CAS  Google Scholar 

  17. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications (Vol. 2). Wiley, New York

    Google Scholar 

  18. Sugimoto W, Iwata H, Yasunaga Y, Murakami Y, Takasu Y (2003) Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew Chem Int Ed 42(34):4092–4096

    Article  CAS  Google Scholar 

  19. Hu CC, Chang KH, Hsu TY (2008) The synergistic influences of OH concentration and electrolyte conductivity on the redox behavior of Ni(OH)2/NiOOH. J Electrochem Soc 155(8):F196–F200

    Article  CAS  Google Scholar 

  20. Eugénio S, Silva TM, Carmezim MJ, Duarte RG, Montemor MF (2014) Electrodeposition and characterization of nickel–copper metallic foams for application as electrodes for supercapacitors. J Appl Electrochem 44(4):455–465

    Article  CAS  Google Scholar 

  21. Du H, Zhou C, Xie X, Li H, Qi W, Wu Y, Liu T (2017) Pseudocapacitance of nanoporous Ni-NiO nanoparticles on Ni foam substrate: influence of the annealing temperature. Int J Hydrog Energy 42(22):15236–15245

    Article  CAS  Google Scholar 

  22. Gobal F, Faraji M (2013) Fabrication of nanoporous nickel oxide by de-zincification of Zn–Ni/(TiO2-nanotubes) for use in electrochemical supercapacitors. Electrochim Acta 100:133–139

    Article  CAS  Google Scholar 

  23. Wang CH, Liu JL, Huang HY (2015) Pseudocapacitive performance of Co(OH)2 enhanced by Ni (OH)2 formation on porous Ni/Cu electrode. Electrochim Acta 182:47–60

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changiz Dehghanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaee, M., Dehghanian, C. Preparation of dendritic nanoporous Ni-NiO foam by electrochemical dealloying for use in high-performance supercapacitors. J Solid State Electrochem 22, 3639–3645 (2018). https://doi.org/10.1007/s10008-018-4065-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4065-1

Keywords

Navigation